Approximation of solution branches for semilinear bifurcation problems

Laurence Cherfils

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 1, page 191-207
  • ISSN: 0764-583X

How to cite

top

Cherfils, Laurence. "Approximation of solution branches for semilinear bifurcation problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.1 (1999): 191-207. <http://eudml.org/doc/193910>.

@article{Cherfils1999,
author = {Cherfils, Laurence},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {semilinear problem; bifurcation; singularity; adaptive finite element method; numerical examples; error estimates},
language = {eng},
number = {1},
pages = {191-207},
publisher = {Dunod},
title = {Approximation of solution branches for semilinear bifurcation problems},
url = {http://eudml.org/doc/193910},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Cherfils, Laurence
TI - Approximation of solution branches for semilinear bifurcation problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 1
SP - 191
EP - 207
LA - eng
KW - semilinear problem; bifurcation; singularity; adaptive finite element method; numerical examples; error estimates
UR - http://eudml.org/doc/193910
ER -

References

top
  1. [1] R. A. Adams, Sobolev spaces. Academic Press (1975). Zbl0314.46030MR450957
  2. [2] E.L. Allgower and K. Georg, Numerical continuation methods, an introduction. Springer Verlag, Berlin (1990). Zbl0717.65030MR1059455
  3. [3] I. Babuska and H. S. Hoo, The p - version of the finite element method for domains with corners and for infinite domains. Numer. Meth. PDE 6 (1990) 371-392. Zbl0717.65084MR1087251
  4. [4] I. Babuska and M. Suri, The h-p version of the finite element method with quasiuniform meshes. RAIRO Modél. Math.Anal. Numér. 21 (1987) 199-238. Zbl0623.65113MR896241
  5. [5] H. BrezisAnalyse fonctionnelle. Masson, Paris (1983). Zbl0511.46001MR697382
  6. [6] F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, part 1: branches of nonsingular solutions. Numer. Math. 36 (1980) 1-36. Zbl0488.65021MR595803
  7. [7] F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, part 2: limit points. Numer Math. 37 (1981) 1-28. Zbl0525.65036MR615889
  8. [8], F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, part 3: simple bifurcation points. Numer. Math. 38: 19811-30. Zbl0525.65037MR634749
  9. [9] G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems. To appear in Handbook of Numerical Analysis, 1994. MR1470227
  10. [10] L. Cherfils, Méthode de cheminement adaptative pour les problèmes semi-linéaires dépendant d'un paramètre. Thèse de l'Université J. Founer, Grenoble I (1996). 
  11. [11] L. Cherfils, Approximation des branches de solutions d'un problème de bifurcation semi-lineaire. C. R. Acad. Sci. Paris 324: (1997) 933-938. Zbl0876.65076MR1450450
  12. [12] P.G. Ciarlet, Basic error estimates for elliptic problems. In Handbook of numencal analysis. Elsevier Science Publishers B. V., North-Holland (1991). Zbl0875.65086MR1115237
  13. [13] M. Crouzeix and J. Rappaz, On numerical approximation in bifurcation theory. Masson, Paris (1986). Zbl0687.65057MR1069945
  14. [14] P. Grisvard, Elliptic problems nonsmooth domains. Pitman, Boston (1985). Zbl0695.35060
  15. [15] J. C. Paumier, Analyse numérique d'un problème aux limites non linéaire. Numer. Math. 37: (1981), 445-452. Zbl0449.65025MR627116
  16. [16] J.C. Paumier, Méthodes numériques pour les bifurcations statiques. collection R M A, Masson (1997). MR1474966
  17. [17] R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982) 437-445. Zbl0483.65007MR645661
  18. [18] Raugel G., Résolution numérique de problèmes elliptiques dans des domaines avec coins. Thèse de l'Université de Rennes. (1978). 
  19. [19] P. A. Raviart and J. M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris (1988). Zbl0561.65069
  20. [20] N. M. Wigley, An efficient method for subtracting off singularities at corners for Laplace's equations J. Comput. Phys. 78 (1988) 369-377. Zbl0657.65129MR965659

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.