Approximation of solution branches for semilinear bifurcation problems
- Volume: 33, Issue: 1, page 191-207
- ISSN: 0764-583X
Access Full Article
topHow to cite
topCherfils, Laurence. "Approximation of solution branches for semilinear bifurcation problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.1 (1999): 191-207. <http://eudml.org/doc/193910>.
@article{Cherfils1999,
author = {Cherfils, Laurence},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {semilinear problem; bifurcation; singularity; adaptive finite element method; numerical examples; error estimates},
language = {eng},
number = {1},
pages = {191-207},
publisher = {Dunod},
title = {Approximation of solution branches for semilinear bifurcation problems},
url = {http://eudml.org/doc/193910},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Cherfils, Laurence
TI - Approximation of solution branches for semilinear bifurcation problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 1
SP - 191
EP - 207
LA - eng
KW - semilinear problem; bifurcation; singularity; adaptive finite element method; numerical examples; error estimates
UR - http://eudml.org/doc/193910
ER -
References
top- [1] R. A. Adams, Sobolev spaces. Academic Press (1975). Zbl0314.46030MR450957
- [2] E.L. Allgower and K. Georg, Numerical continuation methods, an introduction. Springer Verlag, Berlin (1990). Zbl0717.65030MR1059455
- [3] I. Babuska and H. S. Hoo, The p - version of the finite element method for domains with corners and for infinite domains. Numer. Meth. PDE 6 (1990) 371-392. Zbl0717.65084MR1087251
- [4] I. Babuska and M. Suri, The h-p version of the finite element method with quasiuniform meshes. RAIRO Modél. Math.Anal. Numér. 21 (1987) 199-238. Zbl0623.65113MR896241
- [5] H. BrezisAnalyse fonctionnelle. Masson, Paris (1983). Zbl0511.46001MR697382
- [6] F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, part 1: branches of nonsingular solutions. Numer. Math. 36 (1980) 1-36. Zbl0488.65021MR595803
- [7] F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, part 2: limit points. Numer Math. 37 (1981) 1-28. Zbl0525.65036MR615889
- [8], F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, part 3: simple bifurcation points. Numer. Math. 38: 19811-30. Zbl0525.65037MR634749
- [9] G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems. To appear in Handbook of Numerical Analysis, 1994. MR1470227
- [10] L. Cherfils, Méthode de cheminement adaptative pour les problèmes semi-linéaires dépendant d'un paramètre. Thèse de l'Université J. Founer, Grenoble I (1996).
- [11] L. Cherfils, Approximation des branches de solutions d'un problème de bifurcation semi-lineaire. C. R. Acad. Sci. Paris 324: (1997) 933-938. Zbl0876.65076MR1450450
- [12] P.G. Ciarlet, Basic error estimates for elliptic problems. In Handbook of numencal analysis. Elsevier Science Publishers B. V., North-Holland (1991). Zbl0875.65086MR1115237
- [13] M. Crouzeix and J. Rappaz, On numerical approximation in bifurcation theory. Masson, Paris (1986). Zbl0687.65057MR1069945
- [14] P. Grisvard, Elliptic problems nonsmooth domains. Pitman, Boston (1985). Zbl0695.35060
- [15] J. C. Paumier, Analyse numérique d'un problème aux limites non linéaire. Numer. Math. 37: (1981), 445-452. Zbl0449.65025MR627116
- [16] J.C. Paumier, Méthodes numériques pour les bifurcations statiques. collection R M A, Masson (1997). MR1474966
- [17] R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982) 437-445. Zbl0483.65007MR645661
- [18] Raugel G., Résolution numérique de problèmes elliptiques dans des domaines avec coins. Thèse de l'Université de Rennes. (1978).
- [19] P. A. Raviart and J. M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris (1988). Zbl0561.65069
- [20] N. M. Wigley, An efficient method for subtracting off singularities at corners for Laplace's equations J. Comput. Phys. 78 (1988) 369-377. Zbl0657.65129MR965659
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.