Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem

Aihui Zhou

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 1, page 89-97
  • ISSN: 0764-583X

How to cite

top

Zhou, Aihui. "Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.1 (1999): 89-97. <http://eudml.org/doc/193916>.

@article{Zhou1999,
author = {Zhou, Aihui},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {asymptotic error expansion; multi-processor computers in parallel},
language = {eng},
number = {1},
pages = {89-97},
publisher = {Dunod},
title = {Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem},
url = {http://eudml.org/doc/193916},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Zhou, Aihui
TI - Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 1
SP - 89
EP - 97
LA - eng
KW - asymptotic error expansion; multi-processor computers in parallel
UR - http://eudml.org/doc/193916
ER -

References

top
  1. [1] I. Babuska, The finite element methods with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192. Zbl0258.65108MR359352
  2. [2] C. Bernardi and G. Raugel, Analysis of some finite elements of the Stokes problem. Math. Comp. 44 (1985) 71-79. Zbl0563.65075MR771031
  3. [3] H. Blum, Asymptotic error expansion and defect correction in the finite element method Heidelberg (1990). 
  4. [4] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Modèl. Math. Anal. Numer. 2 (1974) 129-151. Zbl0338.90047MR365287
  5. [5] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland(1978). Zbl0383.65058MR520174
  6. [6] R. Duran, R. H. Nochetto and J. Wang, Sharp maximum norm error estimates for finite element approximation for the Stokes problem in 2-d. Math. Comp. 51 (1988) 491-506. Zbl0699.76038MR935076
  7. [7] M. Fortin, Old and new éléments for incompressible flows.Int. J. Numer. Meth. Fluids 1 (1981) 347-367. Zbl0467.76030MR633812
  8. [8] V. Girault and P. A. Raviart, Finite Element Method for Navier-Stokes Equation, Theory and Algorithms. Springer-Verlag, Berlin and Heidelberg (1986). Zbl0585.65077MR851383
  9. [9] R.B. Kellogg and J.E. Osborn, A regularity result for the Stokes problem in a polygon. J. Func. Anal. 21 (1976) 397-413. Zbl0317.35037MR404849
  10. [10] Q. Lin, T. Lü and S. Shen, Asymptotic expansions for finite element approximations. Research Report IMS-11, Chengdu Branch of Academia Sinica (1983). Zbl0528.65055MR726394
  11. [11] Q. Lin, N. Yan and A. Zhou, A rectangle test for interpolated finite elements. in Proc. of Sys. Sci. & Sys. Eng. Great Wall (H.K.), Culture Publish Co. (1991), 217-229. MR1254969
  12. [12] Q. Lin and Q. Zhu, The Preprocessing and Postprocessing for the Finite Element Method. Shanghai Scientïfic & Technical Publishers (1994) (in Chinese). 
  13. [13] G. Marchuk and V. Shaidurov, Difference Methods and their Extrapolation. Springer, New York (1983). Zbl0511.65076MR705477
  14. [14] R. Rannacher, Extrapolation techniques in the finite element method (A Survey). in Proc. of the Summer School in Numer. Anal Helsinki (1988). Zbl0649.65060
  15. [15] R. Teman, Navier-Stokes Equations North-Holland, Amsterdam (1979). Zbl0426.35003
  16. [16] R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Modèl. Math. Anal. Num. 18 (1984) 175-182. Zbl0557.76037MR743884
  17. [17] A. Zhou, Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linearelasticity equation. RAIRO Modèl. Math. Anal. Num. 30, 4 (1996), 401-411. Zbl0858.73076MR1399497
  18. [18] A. Zhou and J. Li, The full approximation accuracy for the stream function-vorticity-pressure method. Numer. Math. 68 (1994) 427-435. Zbl0823.65110MR1313153
  19. [19] A. Zhou, C. B. Liem and T. M. Shih, A parallel algorithm based on multi-parameter asymptotic error expansion, in Proc. of Conference on Scientific Computing, Hong Kong (1994). 
  20. [20] A. Zhou, C.B. Liem, T.M. Shih and T. Lu, A parallel muiti-parameter asymptotic error expansion and a parallel algorithm. Research Report IMS-61, Inst. Math. Sci., Academia Sinica (1994), see also Sys. Sci. & Math Scis. 10, 3 (1997). 253-260. Zbl0895.65058MR1469184

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.