Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem
- Volume: 33, Issue: 1, page 89-97
- ISSN: 0764-583X
Access Full Article
topHow to cite
topZhou, Aihui. "Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.1 (1999): 89-97. <http://eudml.org/doc/193916>.
@article{Zhou1999,
author = {Zhou, Aihui},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {asymptotic error expansion; multi-processor computers in parallel},
language = {eng},
number = {1},
pages = {89-97},
publisher = {Dunod},
title = {Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem},
url = {http://eudml.org/doc/193916},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Zhou, Aihui
TI - Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 1
SP - 89
EP - 97
LA - eng
KW - asymptotic error expansion; multi-processor computers in parallel
UR - http://eudml.org/doc/193916
ER -
References
top- [1] I. Babuska, The finite element methods with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192. Zbl0258.65108MR359352
- [2] C. Bernardi and G. Raugel, Analysis of some finite elements of the Stokes problem. Math. Comp. 44 (1985) 71-79. Zbl0563.65075MR771031
- [3] H. Blum, Asymptotic error expansion and defect correction in the finite element method Heidelberg (1990).
- [4] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Modèl. Math. Anal. Numer. 2 (1974) 129-151. Zbl0338.90047MR365287
- [5] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland(1978). Zbl0383.65058MR520174
- [6] R. Duran, R. H. Nochetto and J. Wang, Sharp maximum norm error estimates for finite element approximation for the Stokes problem in 2-d. Math. Comp. 51 (1988) 491-506. Zbl0699.76038MR935076
- [7] M. Fortin, Old and new éléments for incompressible flows.Int. J. Numer. Meth. Fluids 1 (1981) 347-367. Zbl0467.76030MR633812
- [8] V. Girault and P. A. Raviart, Finite Element Method for Navier-Stokes Equation, Theory and Algorithms. Springer-Verlag, Berlin and Heidelberg (1986). Zbl0585.65077MR851383
- [9] R.B. Kellogg and J.E. Osborn, A regularity result for the Stokes problem in a polygon. J. Func. Anal. 21 (1976) 397-413. Zbl0317.35037MR404849
- [10] Q. Lin, T. Lü and S. Shen, Asymptotic expansions for finite element approximations. Research Report IMS-11, Chengdu Branch of Academia Sinica (1983). Zbl0528.65055MR726394
- [11] Q. Lin, N. Yan and A. Zhou, A rectangle test for interpolated finite elements. in Proc. of Sys. Sci. & Sys. Eng. Great Wall (H.K.), Culture Publish Co. (1991), 217-229. MR1254969
- [12] Q. Lin and Q. Zhu, The Preprocessing and Postprocessing for the Finite Element Method. Shanghai Scientïfic & Technical Publishers (1994) (in Chinese).
- [13] G. Marchuk and V. Shaidurov, Difference Methods and their Extrapolation. Springer, New York (1983). Zbl0511.65076MR705477
- [14] R. Rannacher, Extrapolation techniques in the finite element method (A Survey). in Proc. of the Summer School in Numer. Anal Helsinki (1988). Zbl0649.65060
- [15] R. Teman, Navier-Stokes Equations North-Holland, Amsterdam (1979). Zbl0426.35003
- [16] R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Modèl. Math. Anal. Num. 18 (1984) 175-182. Zbl0557.76037MR743884
- [17] A. Zhou, Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linearelasticity equation. RAIRO Modèl. Math. Anal. Num. 30, 4 (1996), 401-411. Zbl0858.73076MR1399497
- [18] A. Zhou and J. Li, The full approximation accuracy for the stream function-vorticity-pressure method. Numer. Math. 68 (1994) 427-435. Zbl0823.65110MR1313153
- [19] A. Zhou, C. B. Liem and T. M. Shih, A parallel algorithm based on multi-parameter asymptotic error expansion, in Proc. of Conference on Scientific Computing, Hong Kong (1994).
- [20] A. Zhou, C.B. Liem, T.M. Shih and T. Lu, A parallel muiti-parameter asymptotic error expansion and a parallel algorithm. Research Report IMS-61, Inst. Math. Sci., Academia Sinica (1994), see also Sys. Sci. & Math Scis. 10, 3 (1997). 253-260. Zbl0895.65058MR1469184
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.