Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation
- Volume: 30, Issue: 4, page 401-411
- ISSN: 0764-583X
Access Full Article
topHow to cite
topZhou, Aihui. "Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.4 (1996): 401-411. <http://eudml.org/doc/193809>.
@article{Zhou1996,
author = {Zhou, Aihui},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {three fields formulation; pressure},
language = {eng},
number = {4},
pages = {401-411},
publisher = {Dunod},
title = {Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation},
url = {http://eudml.org/doc/193809},
volume = {30},
year = {1996},
}
TY - JOUR
AU - Zhou, Aihui
TI - Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 4
SP - 401
EP - 411
LA - eng
KW - three fields formulation; pressure
UR - http://eudml.org/doc/193809
ER -
References
top- [1] I. BABUŠKA, 1973, The finite element method with Lagrangian multiplies, Numer. Math., 20, pp. 179-192. Zbl0258.65108MR359352
- [2] J. BARANGER and D. SANDRI, 1992, A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow, M2AN, 26, pp. 331-345. Zbl0738.76002MR1153005
- [3] F. BREZZI, 1974, On the existence, uniquence and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO Anal. Numer., R-2, pp. 129-151. Zbl0338.90047MR365287
- [4] F. BREZZI, 1986, A survey of mixed finite element methods, in : Finite Elements-Theory and Application (ed. Dwoyer et al.), Springer-Verlag, pp. 34-49. Zbl0665.73058MR964479
- [5] F. BREZZI and M. FORTIN, 1991, Mixed and Hybrid Finite Element Methods, Springer-Verlag. Zbl0788.73002MR1115205
- [6] F. BREZZI and J. PITKÄRANTA, 1984, On the stabilization of finite element approximations of the Stokes equations, in : Efficient Solutions of Elliptic Systems, Notes on Numer. Fluid Mech., 10 (ed. Hackbush), Vieweg, Wiesbaden, pp. 11-19. Zbl0552.76002MR804083
- [7] P. G. CIARLET, 1976, The Finite Element Methods for Elliptic Problems, North-Holland. Zbl0999.65129MR520174
- [8] P. G. CIARLET and J. L. LIONS, 1991, Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part I), North-Holland, Amsterdam. Zbl0712.65091MR1115235
- [9] M. FORTIN and R. PIERRE, 1989, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows, Comp. Meth. Appl. Mech. Engrg., 73, pp. 341-350. Zbl0692.76002MR1016647
- [10] L. P. FRANCA, 1989, Analysis and finite element approximation of compressible and incompressible linear isotropic elasticity based upon a variational principle, Comp. Meth. Appl. Mech. Engrg., 76, pp. 259-273. Zbl0688.73044MR1030385
- [11] L. P. FRANCA and T. J. R. HUGHES, 1988, Two classes of mixed finite element methods, Comp. Meth. Appl. Mech. Engrg., 69, pp. 89-129. Zbl0629.73053MR953593
- [12] L. P. FRANCA and R. STENBERG, 1991, Error analysis of some Galerkin-least-sequares methods for the elasticity equations, SIAM J. Num. Anal., 78, pp. 1680-1697. Zbl0759.73055MR1135761
- [13] V. GIRAULT and P. A. RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag. Zbl0585.65077MR851383
- [14] R. GLOWINSKI and O. PIRONNEAU, 1979, On a mixed finite element approximation of the Stokes problem I, Convergence of the approximate solution, Numer. Math., 33, pp. 397-424. Zbl0423.65059MR553350
- [15] M. D. GUNZBURGER, 1986, Mathematical aspects of finite element methods for incompressible viscous flows, in : Finite Elements-Theory and Application (ed. Dwoyer et al.), Springer-Verlag, pp. 124-150. Zbl0668.76029MR964483
- [16] M. D. GUNZBURGER, 1989, Finite Element Methods for Incompressible Viscous Flows : A Guide to Theory, Pratice and Algorithms, Academic, Boston. MR1017032
- [17] J. LI and A. ZHOU, 1992, Notes on « On mixed mesh finite elements for solving the stationary Stokes problem », Numer. Anal. J. Chinese Univ., 14, 3, pp. 287-289 (Chinese). MR1260630
- [18] Q. LIN, J. LI and A. ZHOU, 1991, A rectangle test for the Stokes equations, in : Proc. of Sys. Sci. & Sys. Eng., Great Wall (Hongkong), Culture Publish Co., pp. 240-241.
- [19] Q. LIN, N. YAN and A. ZHOU, 1991, A rectangle test for interpolated finite elements, ibid., pp. 217-229.
- [20] Q. LIN and Q. ZHU, 1994, The Proeprocessing and Postprocessing for the Finite Element Method, Shangai Scientific & Technical Publishers (Chinese).
- [21] R. STENBERG, 1984, Analysis of mixed finite element method for the Stokes problem : a unified approach, Math. Comp., 42, pp. 9-23. Zbl0535.76037MR725982
- [22] R. STENBERG, 1991, Postprocess schemes for some mixed finite elements, RAIRO Model. Math. Anal. Numer., 25, pp. 152-168. Zbl0717.65081MR1086845
- [23] R. TEMAN, 1979, Navier-Stokes Equations, North-Holland, Amsterdam. Zbl0426.35003
- [24] R. VERFURTH, 1984, Error estimates for a mixed finite element approximation of the stockes equations, RAIRO Numer. Anal., 18, pp. 175-182. Zbl0557.76037MR743884
- [25] A. ZHOU and J. LI, 1994, The full approximation accuracy for the stream function-vorticity-pressure method, Numer. Math., 68, pp. 427-435. Zbl0823.65110MR1313153
- [26] A. ZHOU, J. LI and N. YAN, 1992, On the full approximation accuracy in finite element methods, in : Proc. Symposium on Applied Math. for Young Chinese Scholars (ed. F. Wu), Inst. of Applied Math., Academia Sinica, Beijing, July, pp. 544-553.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.