Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation

Aihui Zhou

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 4, page 401-411
  • ISSN: 0764-583X

How to cite

top

Zhou, Aihui. "Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.4 (1996): 401-411. <http://eudml.org/doc/193809>.

@article{Zhou1996,
author = {Zhou, Aihui},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {three fields formulation; pressure},
language = {eng},
number = {4},
pages = {401-411},
publisher = {Dunod},
title = {Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation},
url = {http://eudml.org/doc/193809},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Zhou, Aihui
TI - Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 4
SP - 401
EP - 411
LA - eng
KW - three fields formulation; pressure
UR - http://eudml.org/doc/193809
ER -

References

top
  1. [1] I. BABUŠKA, 1973, The finite element method with Lagrangian multiplies, Numer. Math., 20, pp. 179-192. Zbl0258.65108MR359352
  2. [2] J. BARANGER and D. SANDRI, 1992, A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow, M2AN, 26, pp. 331-345. Zbl0738.76002MR1153005
  3. [3] F. BREZZI, 1974, On the existence, uniquence and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO Anal. Numer., R-2, pp. 129-151. Zbl0338.90047MR365287
  4. [4] F. BREZZI, 1986, A survey of mixed finite element methods, in : Finite Elements-Theory and Application (ed. Dwoyer et al.), Springer-Verlag, pp. 34-49. Zbl0665.73058MR964479
  5. [5] F. BREZZI and M. FORTIN, 1991, Mixed and Hybrid Finite Element Methods, Springer-Verlag. Zbl0788.73002MR1115205
  6. [6] F. BREZZI and J. PITKÄRANTA, 1984, On the stabilization of finite element approximations of the Stokes equations, in : Efficient Solutions of Elliptic Systems, Notes on Numer. Fluid Mech., 10 (ed. Hackbush), Vieweg, Wiesbaden, pp. 11-19. Zbl0552.76002MR804083
  7. [7] P. G. CIARLET, 1976, The Finite Element Methods for Elliptic Problems, North-Holland. Zbl0999.65129MR520174
  8. [8] P. G. CIARLET and J. L. LIONS, 1991, Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part I), North-Holland, Amsterdam. Zbl0712.65091MR1115235
  9. [9] M. FORTIN and R. PIERRE, 1989, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows, Comp. Meth. Appl. Mech. Engrg., 73, pp. 341-350. Zbl0692.76002MR1016647
  10. [10] L. P. FRANCA, 1989, Analysis and finite element approximation of compressible and incompressible linear isotropic elasticity based upon a variational principle, Comp. Meth. Appl. Mech. Engrg., 76, pp. 259-273. Zbl0688.73044MR1030385
  11. [11] L. P. FRANCA and T. J. R. HUGHES, 1988, Two classes of mixed finite element methods, Comp. Meth. Appl. Mech. Engrg., 69, pp. 89-129. Zbl0629.73053MR953593
  12. [12] L. P. FRANCA and R. STENBERG, 1991, Error analysis of some Galerkin-least-sequares methods for the elasticity equations, SIAM J. Num. Anal., 78, pp. 1680-1697. Zbl0759.73055MR1135761
  13. [13] V. GIRAULT and P. A. RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag. Zbl0585.65077MR851383
  14. [14] R. GLOWINSKI and O. PIRONNEAU, 1979, On a mixed finite element approximation of the Stokes problem I, Convergence of the approximate solution, Numer. Math., 33, pp. 397-424. Zbl0423.65059MR553350
  15. [15] M. D. GUNZBURGER, 1986, Mathematical aspects of finite element methods for incompressible viscous flows, in : Finite Elements-Theory and Application (ed. Dwoyer et al.), Springer-Verlag, pp. 124-150. Zbl0668.76029MR964483
  16. [16] M. D. GUNZBURGER, 1989, Finite Element Methods for Incompressible Viscous Flows : A Guide to Theory, Pratice and Algorithms, Academic, Boston. MR1017032
  17. [17] J. LI and A. ZHOU, 1992, Notes on « On mixed mesh finite elements for solving the stationary Stokes problem », Numer. Anal. J. Chinese Univ., 14, 3, pp. 287-289 (Chinese). MR1260630
  18. [18] Q. LIN, J. LI and A. ZHOU, 1991, A rectangle test for the Stokes equations, in : Proc. of Sys. Sci. & Sys. Eng., Great Wall (Hongkong), Culture Publish Co., pp. 240-241. 
  19. [19] Q. LIN, N. YAN and A. ZHOU, 1991, A rectangle test for interpolated finite elements, ibid., pp. 217-229. 
  20. [20] Q. LIN and Q. ZHU, 1994, The Proeprocessing and Postprocessing for the Finite Element Method, Shangai Scientific & Technical Publishers (Chinese). 
  21. [21] R. STENBERG, 1984, Analysis of mixed finite element method for the Stokes problem : a unified approach, Math. Comp., 42, pp. 9-23. Zbl0535.76037MR725982
  22. [22] R. STENBERG, 1991, Postprocess schemes for some mixed finite elements, RAIRO Model. Math. Anal. Numer., 25, pp. 152-168. Zbl0717.65081MR1086845
  23. [23] R. TEMAN, 1979, Navier-Stokes Equations, North-Holland, Amsterdam. Zbl0426.35003
  24. [24] R. VERFURTH, 1984, Error estimates for a mixed finite element approximation of the stockes equations, RAIRO Numer. Anal., 18, pp. 175-182. Zbl0557.76037MR743884
  25. [25] A. ZHOU and J. LI, 1994, The full approximation accuracy for the stream function-vorticity-pressure method, Numer. Math., 68, pp. 427-435. Zbl0823.65110MR1313153
  26. [26] A. ZHOU, J. LI and N. YAN, 1992, On the full approximation accuracy in finite element methods, in : Proc. Symposium on Applied Math. for Young Chinese Scholars (ed. F. Wu), Inst. of Applied Math., Academia Sinica, Beijing, July, pp. 544-553. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.