Discrete approximation of the Mumford-Shah functional in dimension two

Antonin Chambolle; Gianni Dal Maso

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 4, page 651-672
  • ISSN: 0764-583X

How to cite

top

Chambolle, Antonin, and Dal Maso, Gianni. "Discrete approximation of the Mumford-Shah functional in dimension two." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.4 (1999): 651-672. <http://eudml.org/doc/193939>.

@article{Chambolle1999,
author = {Chambolle, Antonin, Dal Maso, Gianni},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {classes SBV and GSBV of functions of bounded variation; Mumford-Shah functional; variational approximation; -convergence; special functions of bounded variation; integral functionals},
language = {eng},
number = {4},
pages = {651-672},
publisher = {Dunod},
title = {Discrete approximation of the Mumford-Shah functional in dimension two},
url = {http://eudml.org/doc/193939},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Chambolle, Antonin
AU - Dal Maso, Gianni
TI - Discrete approximation of the Mumford-Shah functional in dimension two
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 4
SP - 651
EP - 672
LA - eng
KW - classes SBV and GSBV of functions of bounded variation; Mumford-Shah functional; variational approximation; -convergence; special functions of bounded variation; integral functionals
UR - http://eudml.org/doc/193939
ER -

References

top
  1. [1] L. Ambrosio, A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B 3 (1989) 857-881. Zbl0767.49001MR1032614
  2. [2] L. Ambrosio, Variational problems in SBV and image segmentation. Acta Appl. Math. 17 (1989) 1-40. Zbl0697.49004MR1029833
  3. [3] L. Ambrosio, Existence theory for a new class of variational problems. Arch. Rational Mech. Anal. 111 (1990) 291-322. Zbl0711.49064MR1068374
  4. [4] L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43 (1990) 999-1036. Zbl0722.49020MR1075076
  5. [5] L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 6 (1992) 105-123. Zbl0776.49029MR1164940
  6. [6] H. Attouch, Variational Convergence for Functions and Operators. Pitman, London (1984). Zbl0561.49012MR773850
  7. [7] G. Bellettini and A. Coscia, Discrete approximation of a free discontinuity problem. Numer. Funct. Anal. Optim. 15 (1994) 201-224. Zbl0806.49002MR1272202
  8. [8] G. Bouchitté, A. Braides and G. Buttazzo, Relaxation results for some free discontinuity problems. J. Reine Angew. Math. 458 (1995) 1-18. Zbl0817.49015MR1310950
  9. [9] B. Bourdin and A. Chambolle, Implementation of an adaptive finite-elements approximation of the Mumford-Shah functional. Preprint LPMTM, Université Paris-Nord/CEREMADE, Université de Paris-Dauphine (1998); Numer. Math. (to appear). Zbl0961.65062MR1771782
  10. [10] A. Braides and G. Dal Maso, Non-Local Approximation of the Mumford-Shah Functional. Calc. Var. Partial Differential Equations 5 (1997) 293-322. Zbl0873.49009MR1450713
  11. [11] A. Chambolle, Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math. 55 (1995) 827-863. Zbl0830.49015MR1331589
  12. [12] G. Cortesani, Strong approximation of GSBV functions by piecewise smooth functions. Ann. Univ. Ferrara Sez. VII (N.S.) (to appear). Zbl0916.49002MR1686747
  13. [13] G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser, Boston (1993). Zbl0816.49001MR1201152
  14. [14] E. De Giorgi and L. Ambrosio, Un nuovo funzionale del calcolo delie variazioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988) 199-210. Zbl0715.49014MR1152641
  15. [15] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842-850. Zbl0339.49005MR448194
  16. [16] F. Dibos and E. Séré, An approximation result for the minimizers of Mumford-Shah functional. Boll. Un, Mat. Ital. A 11 (1997) 149-162. Zbl0873.49008MR1438364
  17. [17] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). Zbl0804.28001MR1158660
  18. [18] H. Federer, Geometric Measure Theory. Springer-Verlag, New York (1969). Zbl0176.00801MR257325
  19. [19] J. Frehse, Capacity methods in the theory of partial differential equations. Jahresber. Deutsch. Math.-Verein. 84 (1982) 1-44. Zbl0486.35002MR644068
  20. [20] E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel (1983). Zbl0545.49018MR775682
  21. [21] J.M. Morel and S. Solimini, Variational Models in Image Segmentation. Birkhäuser, Boston, (1995). Zbl0827.68111MR1321598
  22. [22] D. Mumford and J. Shah, Boundary detection by minimizing functionals, I, in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco (1985). 
  23. [23] D. Mumford and J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577-685. Zbl0691.49036MR997568
  24. [24] P.A. Raviard and J.M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris (1983). Zbl0561.65069
  25. [25] W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.