Interpolation of non-smooth functions on anisotropic finite element meshes

Thomas Apel

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 6, page 1149-1185
  • ISSN: 0764-583X

How to cite

top

Apel, Thomas. "Interpolation of non-smooth functions on anisotropic finite element meshes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.6 (1999): 1149-1185. <http://eudml.org/doc/193966>.

@article{Apel1999,
author = {Apel, Thomas},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {quasi-interpolation operator; anisotropic meshes; finite element; local stability; error estimates; Poisson problem},
language = {eng},
number = {6},
pages = {1149-1185},
publisher = {Dunod},
title = {Interpolation of non-smooth functions on anisotropic finite element meshes},
url = {http://eudml.org/doc/193966},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Apel, Thomas
TI - Interpolation of non-smooth functions on anisotropic finite element meshes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 6
SP - 1149
EP - 1185
LA - eng
KW - quasi-interpolation operator; anisotropic meshes; finite element; local stability; error estimates; Poisson problem
UR - http://eudml.org/doc/193966
ER -

References

top
  1. [1] Th. Apel, Finite-Elemente-Methoden über lokal verfeinerten Netzen für elliptische Probleme in Gebieten mit Kanten. Ph.D. thesis, TU Chemnitz (1991). Zbl0745.65059
  2. [2] Th. Apel, Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements. Computing 60 (1998)157-174. Zbl0897.65003MR1606273
  3. [3] Th. Apel, Anisotropic finite elements: Local estimates and applications. Teubner, Stuttgart (1999). Zbl0934.65121MR1716824
  4. [4] Th. Apel and M. Dobrowolski, Anisotropic interpolation with applications to the finite element method. Computing 47 (1992) 277-293. Zbl0746.65077MR1155498
  5. [5] Th. Apel and B. Heinrich, Mesh refinement and windowing near edges for some elliptic problem. SIAM J. Numer. Anal. 31 (1994) 695-708. Zbl0807.65122MR1275108
  6. [6] Th. Apel and G. Lube, Anisotropic mesh refinement in stabilized Galerkin methods. Numer. Math. 74 (1996) 261-282. Zbl0878.65097MR1408603
  7. [7] Th. Apel and G. Lube, Anisotropic mesh refinement for a singularly perturbed reaction diffusion model problem. Appl. Numer. Math. 26 (1998) 415-433. Zbl0933.65136MR1612364
  8. [8] Th. Apel and F. Milde, Comparison of several mesh refinement strategies near edges. Comm. Numer. Methods Engrg, 12 (1996) 373-381. Zbl0865.65086
  9. [9] Th. Apel and S. Nicaise, Elliptic problems in domains with edges: anisotropic regularity and anisotropic finite element meshes, in Partial Differential Equations and Functional Analysis (In Memory of Pierre Grisvard), J. Cea, D. Chenais, G. Geymonat, and J.L. Lions Eds., Birkhäuser, Boston (1996) 18-34. Shortened version of Preprint SPC94_16, TU Chemnitz-Zwickau (1994). Zbl0854.35005MR1399121
  10. [10] Th. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for the Poisson problem in domains with edges. Technical report, TU Chemnitz-Zwickau (1996). Improved version of Preprint SPC94_16, TU Chemnitz-Zwickau (1994), available only via ftp, server ftp.tu-chemnitz.de, directory pub/Local/mathematik/Apel, file anl.ps.Z. 
  11. [11] Th. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci. 21 (1998) 519-549. Zbl0911.65107MR1615426
  12. [12] Th. Apel, A.-M. Sändig and J. R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19 (1996) 63-85. Zbl0838.65109MR1365264
  13. [13] I. Babuška, R. B. Kellogg and J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinements.Numer. Math. 33 (1979) 447-471. Zbl0423.65057MR553353
  14. [14] A. E. Beagles and J. R. Whiteman, Finite element treatment of boundary singularities by augmentation with non-exact singular functions. Numer. Methods Partial Differential Equations 2 (1986) 113-121. Zbl0626.65112MR867853
  15. [15] R. Becker, An adaptive finite element method for the incompressible Navier-Stokes equations on time-dependent domains. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg (1995). Zbl0847.76028
  16. [16] J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation. SIAM J. Numer. Anal 7 (1970) 112-124. Zbl0201.07803MR263214
  17. [17] J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with applications to Hermite interpolation. Numer. Math. 16 (1971) 362-369. Zbl0214.41405MR290524
  18. [18] P. G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
  19. [19] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. Zbl0368.65008MR400739
  20. [20] M. Dobrowolski and H.-G Roos, A priori estimates for the solution of convection-diffusion problems and interpolation on Shishkin meshes. Z. Anal. Anwendungen 16 (1997) 1001-1012. Zbl0892.35014MR1615644
  21. [21] T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34 (1980) 441-463. Zbl0423.65009MR559195
  22. [22] R. G. Durán, Error estimates for 3-d narrow finite elements. Math. Comput. 68 (1999) 187-199. Zbl0910.65078MR1489970
  23. [23] A. Kufner and A.-M. Sandig, Some Applications of Weighted Sobolev Spaces. Teubner, Leipzig (1987). Zbl0662.46034MR926688
  24. [24] G. Kunert, Error estimation for anisotropic tetrahedral and triangular finite element meshes. Preprint SFB393/97-17, TUChemnitz (1997). Zbl0919.65066
  25. [25] M. S. Lubuma and S. Nicaise, Dirichlet problems in polyhedral domains II: approximation by FEM and BEM. J. Comput. Appl. Math. 61 (1995) 13-27. Zbl0840.65110MR1358044
  26. [26] M. S. Lubuma and S. Nicaise, Finite element method for elliptic problems with edge corners. J.Comput. Appl. Math, (submitted). Zbl0936.65130
  27. [27] L. A. Oganesyan and L. A. Rukhovets, Variational-difference methods for the solution of elliptic equations. Izd. Akad. Nauk Armyanskoi SSR, Jerevan (1979). In Russian. Zbl0357.65088MR584442
  28. [28] P. Oswald, Multilevel Finite Element Approximation: Theory and Applications. Teubner, Stuttgart (1994). Zbl0830.65107MR1312165
  29. [29] T. von Petersdorff, Randwertprobleme der Elastizitätstheorie für Polyeder - Singularitäten und Approximationen mit Randelementmethoden. Ph.D. thesis, TH Darmstadt (1989). Zbl0709.73009
  30. [30] L. R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp.54 (1990) 483-493. Zbl0696.65007MR1011446
  31. [31] N. A. Shenk, Uniform error estimates for certain narrow Lagrangian finite elements. Math. Comp. 63 (1994) 105-119. Zbl0807.65003MR1226816
  32. [32] K. Siebert, An a posteriori error estimator for anisotropic refinement. Numer. Math. 73 (1996) 373-398. Zbl0873.65098MR1389492
  33. [33] E. P. Stephan and J. R. Whiteman, Singularities of the Laplacian at corners and edges of three-dimensional domains and their treatment with finite element methods. Math. Methods Appl Sci. 10 (1988) 339-350. Zbl0671.35018MR949661
  34. [34] H. Walden and R. B. Kellogg, Numerical determination of the fundamental eigenvalue for the Laplace operator on a spherical domain. J. Engrg. Math. 11 (1977) 299-318. Zbl0367.65062MR471363

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.