L 2 -stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes

Serge Piperno

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 1, page 139-158
  • ISSN: 0764-583X

How to cite

top

Piperno, Serge. "$L^2$-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.1 (2000): 139-158. <http://eudml.org/doc/193975>.

@article{Piperno2000,
author = {Piperno, Serge},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {stability; finite volume scheme; Maxwell's equations; absorbing boundary conditions},
language = {eng},
number = {1},
pages = {139-158},
publisher = {Dunod},
title = {$L^2$-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes},
url = {http://eudml.org/doc/193975},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Piperno, Serge
TI - $L^2$-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 1
SP - 139
EP - 158
LA - eng
KW - stability; finite volume scheme; Maxwell's equations; absorbing boundary conditions
UR - http://eudml.org/doc/193975
ER -

References

top
  1. [1] J.J. Ambrosiano, S.T. Brandon, R. Löhner and C.R. DeVore, Electromagnetics via the Taylor-Galerkin finite element method on unstructured grids. J. Comput. Phys. 110 (1994) 310-319. Zbl0795.65088
  2. [2] D.A. Anderson, J.C. Tannehill and R.H. Pletcher, Computational fluid mechanics and heat transfer, Hemisphere, McGraw-Hill, New York (1984). Zbl0569.76001MR761171
  3. [3] F. Bourdel, P.-A. Mazet and P. Helluy, Resolution of the non-stationary or harmonic Maxwell equations by a discontinuous finite element method. Application to an E.M.I. (electromagnetic impulse) case. Computing Methods in Applied Sciences and Engineering. Nova Science Publishers, Inc., New-York (1991) 405-422. 
  4. [4] P.G. Ciarlet and J.-L. Lions Eds., Handbook of Numerical Analysis, Vol. 1. North Holland-Elsevier Science Publishers, Amsterdam, New York, Oxford (1991). Zbl0689.65001MR1115235
  5. [5] J.-P. Cioni, L. Fezoui and H. Steve, Approximation des équations de Maxwell par des schémas décentrés en éléments finis. Technical Report RR-1601, INRIA (1992). 
  6. [6] J.-P. Cioni and M. Remaki, Comparaison de deux méthodes de volumes finis en électromagnétisme. Technical Report RR-3166, INRIA (1997). 
  7. [7] J.-P. Cioni, L. Fezoui, L. Anne and F. Poupaud, A parallel FVTD Maxwell solver using 3D unstructured meshes, in 13th annual review of progress in applied computational electromagnetics, Monterey, California (1997). 
  8. [8] G. Cohen and P. Joly Eds., Aspects récents en méthodes numériques pour les équations de Maxwell, Collection didactique INRIA, INRIA Rocquencourt, France (1998) 23-27. 
  9. [9] S. Depeyre, Étude de schémas d'ordre élevé en volumes finis pour des problèmes hyperboliques. Application aux équations de Maxwell, d'Buler et aux écoulements diphasiques dispersés. Mathématiques appliquées, ENPC, janvier (1997). 
  10. [10] R. Eymard, T. Gallouët and R. Herbin, The finite volume method. in Handbook for Numerical Analysis, North Holland-Elsevier Science Publishers, Amsterdam, New York, Oxford (to appear). Zbl0981.65095MR1804748
  11. [11] L. Fezoui and B. Stoufflet, A class of implicit upwind schemes for euler simulations with unstructured meshes. J. Comput. Phys. 84 (1989) 174-206. Zbl0677.76062MR1015358
  12. [12] A. Harten, High Resolution Schemes for Hyperbolic Conservation Laws. J. Comput. Phys. 49 (1983) 357-393. Zbl0565.65050MR701178
  13. [13] A. Harten, P.D. Lax and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev. 25 (1983) 36-61. Zbl0565.65051MR693713
  14. [14] A. Jameson, Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows, in 11th AIAA Computational Fluid Dynamics Conference, Orlando, Florida, July 6-9 (1993), AIAA paper 93-3359. 
  15. [15] P. Lesaint, Sur la résolution des systèmes hyperboliques du premier ordre par des méthodes d'éléments finis. Ph.D. thesis, Université de Paris VI, France (1975). 
  16. [16] R. Löhner and J. Ambrosiano, A finite element solver for the Maxwell equations, in GAMNI-SMAI Conference on Numerical Methods for the Maxwell Equations, Paris, France (1989). SIAM, Philadelphia (1991). Zbl0718.65076
  17. [17] M. Remaki, A new finite volume scheme for solving Maxwell System. Technical Report RR-3725, INRIA (1999). Zbl0994.78021
  18. [18] M. Remaki, L. Fezoui and F. Poupaud, Un nouveau schéma de type volumes finis appliqué aux équations de Maxwell en milieu hétérogène. Technical Report RR-3351, INRIA (1998). 
  19. [19] J.S. Shang, A characteristic-based algorithm for solving 3D, time-domain Maxwell equations. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada. January 6-9 (1992), AIAA paper 92-0452. 
  20. [20] J.S. Shang and R.M. Fithen, A comparative study of characteristic-based algorithms for the Maxwell equations. J. Comput. Phys. 125 (1996) 378-394. Zbl0848.65087MR1388152
  21. [21] V. Shankar, W.F. Hall and A.H. Mohammadian, A time-domain differential solver for electromagnetic scattering problems. Proc. IEEE 77 (1989) 709-720. 
  22. [22] A. Tafiove, Re-inventing electromagnetics: supercomputing solution of Maxwell's equations via direct time integration on space grids. AIAA paper 92-0333 (1992). 
  23. [23] K.R. Umashankar, Numerical analysis of electromagnetic wave scattering and interaction based on frequency-domain integral equation and method of moments techniques. Wave Motion 10 (1988) 493. Zbl0672.73026MR972733
  24. [24] B. Van Leer, Towards the ultimate conservative difference scheme v: a second-order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 361-370. Zbl0276.65055MR1703646
  25. [25] J.-P. Vila, Convergence and error estimates in finite volume schemes for general multidimensional scalr conservation laws. I. Explicite monotone schemes. RAIRO Modél. Math. Anal. Numér. 28 (1994) 267-295. Zbl0823.65087MR1275345
  26. [26] J.-P. Vila and P. Villedieu, Convergence de la méthode des volumes finis pour les systèmes de Friedrichs. C.R. Acad. Sci. Paris Sér. I Math. 3(325) (1997) 671-676. Zbl0888.65107MR1473844
  27. [27] R.F. Warming and F. Hyett, The modified equation approach to the stability and accuracy analysis of finite-difference methods. J. Comput. Phys. 14 (1974) 159-179. Zbl0291.65023MR339526
  28. [28] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas and Propagation AP-16 (1966) 302-307. Zbl1155.78304

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.