-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes
- Volume: 34, Issue: 1, page 139-158
- ISSN: 0764-583X
Access Full Article
topHow to cite
topPiperno, Serge. "$L^2$-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.1 (2000): 139-158. <http://eudml.org/doc/193975>.
@article{Piperno2000,
author = {Piperno, Serge},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {stability; finite volume scheme; Maxwell's equations; absorbing boundary conditions},
language = {eng},
number = {1},
pages = {139-158},
publisher = {Dunod},
title = {$L^2$-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes},
url = {http://eudml.org/doc/193975},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Piperno, Serge
TI - $L^2$-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 1
SP - 139
EP - 158
LA - eng
KW - stability; finite volume scheme; Maxwell's equations; absorbing boundary conditions
UR - http://eudml.org/doc/193975
ER -
References
top- [1] J.J. Ambrosiano, S.T. Brandon, R. Löhner and C.R. DeVore, Electromagnetics via the Taylor-Galerkin finite element method on unstructured grids. J. Comput. Phys. 110 (1994) 310-319. Zbl0795.65088
- [2] D.A. Anderson, J.C. Tannehill and R.H. Pletcher, Computational fluid mechanics and heat transfer, Hemisphere, McGraw-Hill, New York (1984). Zbl0569.76001MR761171
- [3] F. Bourdel, P.-A. Mazet and P. Helluy, Resolution of the non-stationary or harmonic Maxwell equations by a discontinuous finite element method. Application to an E.M.I. (electromagnetic impulse) case. Computing Methods in Applied Sciences and Engineering. Nova Science Publishers, Inc., New-York (1991) 405-422.
- [4] P.G. Ciarlet and J.-L. Lions Eds., Handbook of Numerical Analysis, Vol. 1. North Holland-Elsevier Science Publishers, Amsterdam, New York, Oxford (1991). Zbl0689.65001MR1115235
- [5] J.-P. Cioni, L. Fezoui and H. Steve, Approximation des équations de Maxwell par des schémas décentrés en éléments finis. Technical Report RR-1601, INRIA (1992).
- [6] J.-P. Cioni and M. Remaki, Comparaison de deux méthodes de volumes finis en électromagnétisme. Technical Report RR-3166, INRIA (1997).
- [7] J.-P. Cioni, L. Fezoui, L. Anne and F. Poupaud, A parallel FVTD Maxwell solver using 3D unstructured meshes, in 13th annual review of progress in applied computational electromagnetics, Monterey, California (1997).
- [8] G. Cohen and P. Joly Eds., Aspects récents en méthodes numériques pour les équations de Maxwell, Collection didactique INRIA, INRIA Rocquencourt, France (1998) 23-27.
- [9] S. Depeyre, Étude de schémas d'ordre élevé en volumes finis pour des problèmes hyperboliques. Application aux équations de Maxwell, d'Buler et aux écoulements diphasiques dispersés. Mathématiques appliquées, ENPC, janvier (1997).
- [10] R. Eymard, T. Gallouët and R. Herbin, The finite volume method. in Handbook for Numerical Analysis, North Holland-Elsevier Science Publishers, Amsterdam, New York, Oxford (to appear). Zbl0981.65095MR1804748
- [11] L. Fezoui and B. Stoufflet, A class of implicit upwind schemes for euler simulations with unstructured meshes. J. Comput. Phys. 84 (1989) 174-206. Zbl0677.76062MR1015358
- [12] A. Harten, High Resolution Schemes for Hyperbolic Conservation Laws. J. Comput. Phys. 49 (1983) 357-393. Zbl0565.65050MR701178
- [13] A. Harten, P.D. Lax and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev. 25 (1983) 36-61. Zbl0565.65051MR693713
- [14] A. Jameson, Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows, in 11th AIAA Computational Fluid Dynamics Conference, Orlando, Florida, July 6-9 (1993), AIAA paper 93-3359.
- [15] P. Lesaint, Sur la résolution des systèmes hyperboliques du premier ordre par des méthodes d'éléments finis. Ph.D. thesis, Université de Paris VI, France (1975).
- [16] R. Löhner and J. Ambrosiano, A finite element solver for the Maxwell equations, in GAMNI-SMAI Conference on Numerical Methods for the Maxwell Equations, Paris, France (1989). SIAM, Philadelphia (1991). Zbl0718.65076
- [17] M. Remaki, A new finite volume scheme for solving Maxwell System. Technical Report RR-3725, INRIA (1999). Zbl0994.78021
- [18] M. Remaki, L. Fezoui and F. Poupaud, Un nouveau schéma de type volumes finis appliqué aux équations de Maxwell en milieu hétérogène. Technical Report RR-3351, INRIA (1998).
- [19] J.S. Shang, A characteristic-based algorithm for solving 3D, time-domain Maxwell equations. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada. January 6-9 (1992), AIAA paper 92-0452.
- [20] J.S. Shang and R.M. Fithen, A comparative study of characteristic-based algorithms for the Maxwell equations. J. Comput. Phys. 125 (1996) 378-394. Zbl0848.65087MR1388152
- [21] V. Shankar, W.F. Hall and A.H. Mohammadian, A time-domain differential solver for electromagnetic scattering problems. Proc. IEEE 77 (1989) 709-720.
- [22] A. Tafiove, Re-inventing electromagnetics: supercomputing solution of Maxwell's equations via direct time integration on space grids. AIAA paper 92-0333 (1992).
- [23] K.R. Umashankar, Numerical analysis of electromagnetic wave scattering and interaction based on frequency-domain integral equation and method of moments techniques. Wave Motion 10 (1988) 493. Zbl0672.73026MR972733
- [24] B. Van Leer, Towards the ultimate conservative difference scheme v: a second-order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 361-370. Zbl0276.65055MR1703646
- [25] J.-P. Vila, Convergence and error estimates in finite volume schemes for general multidimensional scalr conservation laws. I. Explicite monotone schemes. RAIRO Modél. Math. Anal. Numér. 28 (1994) 267-295. Zbl0823.65087MR1275345
- [26] J.-P. Vila and P. Villedieu, Convergence de la méthode des volumes finis pour les systèmes de Friedrichs. C.R. Acad. Sci. Paris Sér. I Math. 3(325) (1997) 671-676. Zbl0888.65107MR1473844
- [27] R.F. Warming and F. Hyett, The modified equation approach to the stability and accuracy analysis of finite-difference methods. J. Comput. Phys. 14 (1974) 159-179. Zbl0291.65023MR339526
- [28] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas and Propagation AP-16 (1966) 302-307. Zbl1155.78304
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.