A domain splitting method for heat conduction problems in composite materials

Friedrich Karl Hebeker

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 1, page 47-62
  • ISSN: 0764-583X

How to cite

top

Hebeker, Friedrich Karl. "A domain splitting method for heat conduction problems in composite materials." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.1 (2000): 47-62. <http://eudml.org/doc/193980>.

@article{Hebeker2000,
author = {Hebeker, Friedrich Karl},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {composite materials; layered subdomains; noniterative overlapping domain decomposition; convergence; error estimates; linear evolutionary heat equation; homogenization; finite elements; domain splitting method; numerical experiments},
language = {eng},
number = {1},
pages = {47-62},
publisher = {Dunod},
title = {A domain splitting method for heat conduction problems in composite materials},
url = {http://eudml.org/doc/193980},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Hebeker, Friedrich Karl
TI - A domain splitting method for heat conduction problems in composite materials
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 1
SP - 47
EP - 62
LA - eng
KW - composite materials; layered subdomains; noniterative overlapping domain decomposition; convergence; error estimates; linear evolutionary heat equation; homogenization; finite elements; domain splitting method; numerical experiments
UR - http://eudml.org/doc/193980
ER -

References

top
  1. [1] H. Blum, S. Lisky and R. Rannacher, A domain splitting algorithm for parabolic problems. Computing 49 (1992) 11-23. Zbl0767.65073MR1182439
  2. [2] D. Braess, W. Dahmen and Chr. Wieners, A multigrid algorithm for the mortar finite element method. SIAM J. Numer. Anal. 37 (1999) 48-69. Zbl0942.65139MR1721260
  3. [3] H. Chen and R.D. Lazarov, Domain splitting algorithm for mixed finite element approximations to parabolic problems. East-West J. Numer. Math. 4 (1996) 121-135. Zbl0878.65081MR1403647
  4. [4] Z. Chen and J. Zou, Finite element methods and their convergence analysis for elliptic and parabolic interface problems. Numer. Math. 79 (1998) 175-202. Zbl0909.65085MR1622502
  5. [5] W. Hackbusch, Theorie und Numerik elliptischer Differentialgleichungen. Teubner, Stuttgart (1986). Zbl0609.65065MR1600003
  6. [6] W. Hackbusch and S. Sauter, Composite finite elements for the approximation of PDEs on domains with complicated microstructures. Numer. Math. 75 (1997) 447-472. Zbl0874.65086MR1431211
  7. [7] H. Haller, Composite materials of shape-memory alloys: micromechanical modelling and homogenization (in German). Ph.D. thesis, Technische Universitàt München (1997). Zbl0885.73041
  8. [8] F.H. Hebeker, An a posteriori error estimator for elliptic boundary and interface problems. Preprint 97-46 (SFB 359), Universität Heidelberg (1997); submitted. 
  9. [9] F.K. Hebeker, Multigrid convergence analysis for elliptic problems arising in composite materials (in preparation). 
  10. [10] F.K. Hebeker and Yu.A. Kuznetsov, Unsteady convection and convection-diffusion problems via direct overlapping domain decomposition methods. Preprint 93-54 (SFB 359), Universität Heidelberg, 1993; Numer. Methods Partial Differential Equations 14 (1998) 387-406. Zbl0919.65058MR1621378
  11. [11] K.H. Hoffmann and J. Zou, Finite element analysis on the Lawrence-Doniach model for layered superconductors. Numer. Funct. Anal. Optim. 18 (1997) 567-589. Zbl1114.65349MR1467663
  12. [12] J. Jäger, An overlapping domain decomposition method to parallelize the solution of parabolic differential equations (in German). Ph.D. thesis, Universität Heidelberg (1994). Zbl0801.65094
  13. [13] C. Kober, Composite materials of shape-memory alloys: modelling as layers and numerical simulation (in German). Ph.D. thesis, Technische Universität München (1997). Zbl0909.73053
  14. [14] Yu.A. Kuznetsov, New algorithms for approximate realization of implicit difference schemes. Sov. J. Numer. Anal. Modell. 3 (1988) 99-114. Zbl0825.65066MR925822
  15. [15] Yu.A. Kuznetsov, Domain decomposition methods for unsteady convection diffusion problems. Comput. Methods Appl. Sci. Engin. (Proceedings of the Ninth International Conference, Paris 1990) SIAM, Philadelphia (1990) 211-227. Zbl0744.65063MR1102024
  16. [16] Yu.A. Kuznetsov, Overlapping domain decomposition methods for finite element problems with singular perturbed operators. in Domain decomposition Methods for Partial differential equations, R. Glowinski et al. Eds., SIAM, Philadelphia. Proc. of the 4th Intl. Symp. (1991) 223-241. Zbl0766.65089MR1106465
  17. [17] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer, Berlin etc. (1994). Zbl0803.65088MR1299729
  18. [18] R. Rannacher and J. Zhou, Analysis of a domain splitting method for nonstationary convection-diffusion problems. East-West J. Numer. Math. 2 (1994) 151-172. Zbl0836.65100MR1281036
  19. [19] J. Wloka, Partielle Differentialgleichungen. Teubner, Stuttgart (1982). Zbl0482.35001MR652934

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.