Dual combined finite element methods for non-newtonian flow (II). Parameter-dependent problem
- Volume: 34, Issue: 5, page 1051-1067
- ISSN: 0764-583X
Access Full Article
topHow to cite
topMing, Pingbing, and Shi, Zhong-Ci. "Dual combined finite element methods for non-newtonian flow (II). Parameter-dependent problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.5 (2000): 1051-1067. <http://eudml.org/doc/194020>.
@article{Ming2000,
author = {Ming, Pingbing, Shi, Zhong-Ci},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {5},
pages = {1051-1067},
publisher = {Dunod},
title = {Dual combined finite element methods for non-newtonian flow (II). Parameter-dependent problem},
url = {http://eudml.org/doc/194020},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Ming, Pingbing
AU - Shi, Zhong-Ci
TI - Dual combined finite element methods for non-newtonian flow (II). Parameter-dependent problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 5
SP - 1051
EP - 1067
LA - eng
UR - http://eudml.org/doc/194020
ER -
References
top- [1] R.A. Adams, Sobolev Space. Academic Press, New York (1975). Zbl0314.46030MR450957
- [2] C. Amrouche and V. Girault, Propriétés fonctionnelles d'opérateurs. Application au problème de stokes en dimension qualconque. Publications du Laboratoire d'Analyse Numérique, No 90025, Université Piere et Marie Curie, Paris, France (1990).
- [3] D.N. Arnold and F. Brezzi, Some new elements for the Reissner-Mindlin plate model, Boundary Value Problems for Partial Differential Equations, edited by C. Baiocchi and J.L. Lions Masson, Paris (1992) 287-292. Zbl0817.73058MR1260452
- [4] J. Baranger, K. Najib and D. Sandri, Numerical analysis of a three-field model for a Quasi-Newtonian flow. Comput. Methods Appl. Mech. Engrg. 109 (1993) 281-292. Zbl0844.76004MR1245979
- [5] J.W. Barrett and W.B. Liu, Quasi-norm error bounds for the finite element approximation of a Non-Newtonian flow. Numer. Math. 61 (1994) 437-456. Zbl0811.76036MR1301740
- [6] F. Brezzi and R.S. Falk, Stability of higher-order Hood-Taylor methods, SIAM J. Numer. Anal. 28 (1991) 581-590. Zbl0731.76042MR1098408
- [7] F. Brezzi and M. Fortin, Mixed and Hybrid Methods. Springer-Verlags, New York (1991). Zbl0788.73002MR1115205
- [8] P.G. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1978). Zbl0383.65058MR520174
- [9] M.J. Crochet, A.R. Davis and K. Walters, Numerical Simulations of Non-Newtonian Flow. Elsevier, Amsterdam, Rheology Series 1 (1984). Zbl0583.76002MR801545
- [10] M. Crouzeix and P. Raviart, Conforming and nonconforming finite element methods for solving the stationary stokes equations. RAIRO Anal. Numér. 3 (1973) 33-75. Zbl0302.65087
- [11] M. Fortin, Old and new finite elements for incompressible flows. Internat J. Numer. Methods Fluids 1 (1981) 347-364. Zbl0467.76030MR633812
- [12] M. Fortin, R. Guénette and R. Pierre, Numerical analysis of the modified EVSS method. Comput. Methods Appl. Mech. Engrg. 143 (1997) 79-95. Zbl0896.76040MR1442390
- [13] M. Fortin and R. Pierre, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows. Comput. Methods Appl. Mech. Engrg. 73 (1989) 341-350. Zbl0692.76002MR1016647
- [14] V. Girault and R.A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin-New York (1986). Zbl0585.65077MR851383
- [15] P. Hood and C. Taylor, A numerical solution of the Navier-Stokes equation using the finite element technique. Comput. and Fluids 1 (1973) 73-100. Zbl0328.76020MR339677
- [16] A.F.D. Loula and J.W.C. Guerreiro, Finite element analysis of nonlinear creeping flows. Comput. Methods Appl. Mech. Engrg. 79 (1990) 89-109. Zbl0716.73091MR1044205
- [17] J. Malek and S.J. Nečas, Weak and Measure-valued Solution to Evolutionary Partial Differential Equations. Chapman & Hall (1996). Zbl0851.35002
- [18] Pingbing Ming and Zhong-ci Shi, Dual combined finite element methods for Non-Newtonian flow (I) Nonlinear Stabilized Methods (1998 Preprint). Zbl1072.76567
- [19] Pingbing Ming and Zhong-ci Shi, A technique for the analysis of B-B inequality for non-Newtonian flow (1998 Preprint). MR1807105
- [20] D. Sandri, Analyse d'une formulation à trois champs du problème de Stokes. RAIRO Modél. Math. Math. Anal. Numér. 27 (1993) 817-841. Zbl0791.76008MR1249454
- [21] D. Sandri, Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscoélastiques suit la Loi Puissance ou le modèle de Carreau. RAIRO-Modèl. Math. Anal. Numér. 27 (1993) 131-155. Zbl0764.76039MR1211613
- [22] D. Sandri, A posteriori estimators for mixed finite element approximation of a fluid obeying the power law. Comput. Meths Appl. Mech. Engrg. 166 (1998) 329-340. Zbl0953.76057MR1659179
- [23] C. Schwab and M. Suri, Mixed h - p finite element methods for Stokes and non-Newtonian Flow. Research report No 97-19, Seminar für Angewandte Mathematik, ETH Zürich (1997). Zbl0924.76052
- [24] B. Szabó and I. Babuška, Finite Element Analysis. John & Sons, Inc. (1991). Zbl0792.73003MR1164869
- [25] Tianxiao Zhou, Stabilized finite element methods for a model parameter-dependent problem, in Proc of the Second Conference on Numerical Methods for P.D.E., edited by Longan Ying and Benyu Guo World Scientific, Singapore (1991) 192-194. MR1160831
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.