Analyse d'une formulation à trois champs du problème de Stokes

D. Sandri

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1993)

  • Volume: 27, Issue: 7, page 817-841
  • ISSN: 0764-583X

How to cite

top

Sandri, D.. "Analyse d'une formulation à trois champs du problème de Stokes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.7 (1993): 817-841. <http://eudml.org/doc/193725>.

@article{Sandri1993,
author = {Sandri, D.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {numerical approximation; extra stress tensor; velocity; pressure; Oldroyd constitutive equation; inf-sup conditions; fixed point method},
language = {fre},
number = {7},
pages = {817-841},
publisher = {Dunod},
title = {Analyse d'une formulation à trois champs du problème de Stokes},
url = {http://eudml.org/doc/193725},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Sandri, D.
TI - Analyse d'une formulation à trois champs du problème de Stokes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 7
SP - 817
EP - 841
LA - fre
KW - numerical approximation; extra stress tensor; velocity; pressure; Oldroyd constitutive equation; inf-sup conditions; fixed point method
UR - http://eudml.org/doc/193725
ER -

References

top
  1. [1] I. BABUSKA, 1971, Error-bounds for finite element method, Numer. Math., 16, 322-333. Zbl0214.42001MR288971
  2. [2] J. BARANGER, D. SANDRI, 1992, Formulation of Stokes's problem and the linear elasticity equations suggested by Oldroyd model for viscoelastics flows, RAIRO ModéL Math. Anal Numér., 26, 331-345. Zbl0738.76002MR1153005
  3. [3] F. BREZZI, 1974, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Modél. Math. Anal. Numér., 8, 129-151. Zbl0338.90047MR365287
  4. [4] P. G. CIARLET, 1978, The finite element method for elliptic problems, North-Holland, Amsterdam. Zbl0383.65058MR520174
  5. [5] M. FORTIN, R. PIERRE, 1989, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows, Comput. Methods Appl. Mech. Engrg., 73, 341-350. Zbl0692.76002MR1016647
  6. [6] V. GIRAULT, P. A. RAVIART, 1986, Finite element method for Navier-Stokes equations, Theory and Algorithms, Springer, Berlin Heidelberg New York. Zbl0585.65077MR851383
  7. [7] R. KEUNINGS, 1989, in : Tucker Ch. III (éd.), Computer Modeling for Polymer Processing, 403-469. Munich: Hanser Verlag. 
  8. [8] J. M. MARCHAL, M. J. CROCHET, 1987, A new finite element for calculating viscoelastic flow, J. Non-Newtonian Fluid Mech., 26, 77-114. Zbl0637.76009
  9. [9] V. RUAS, An optimal three field finite element approximation of the Stokes system with continuous extra stresses, Japan Journal of Industrial and Applied Mathematics, à paraître. Zbl0797.76045
  10. [10] K. YOSHIDA, 1980, Functional Analysis, Springer Verlag, Berlin Heidelberg New York. 

Citations in EuDML Documents

top
  1. Pingbing Ming, Zhong-Ci Shi, Dual combined finite element methods for non-newtonian flow (II). Parameter-dependent problem
  2. Pingbing Ming, Zhong-ci Shi, Dual Combined Finite Element Methods For Non-Newtonian Flow (II) Parameter-Dependent Problem
  3. Marco Picasso, Jacques Rappaz, Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows
  4. V. Ruas, Finite element methods for the three-field Stokes system in 3 : Galerkin methods
  5. Marco Picasso, Jacques Rappaz, Existence, and error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows
  6. Andrea Bonito, Philippe Clément, Marco Picasso, Finite element analysis of a simplified stochastic Hookean dumbbells model arising from viscoelastic flows

NotesEmbed ?

top

You must be logged in to post comments.