Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems

Mihai Bostan

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2001)

  • Volume: 35, Issue: 1, page 165-189
  • ISSN: 0764-583X

Abstract

top
The topic of this paper is the numerical analysis of time periodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM) which forms the basis of our study is presented. Theoretical results have been proved in the linear finite dimensional case. This method is applied to scattering problems and transport of charged particles.

How to cite

top

Bostan, Mihai. "Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.1 (2001): 165-189. <http://eudml.org/doc/194041>.

@article{Bostan2001,
abstract = {The topic of this paper is the numerical analysis of time periodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM) which forms the basis of our study is presented. Theoretical results have been proved in the linear finite dimensional case. This method is applied to scattering problems and transport of charged particles.},
author = {Bostan, Mihai},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {electro-magnetism; Maxwell equations; Vlasov equation; finite volumes},
language = {eng},
number = {1},
pages = {165-189},
publisher = {EDP-Sciences},
title = {Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems},
url = {http://eudml.org/doc/194041},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Bostan, Mihai
TI - Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 1
SP - 165
EP - 189
AB - The topic of this paper is the numerical analysis of time periodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM) which forms the basis of our study is presented. Theoretical results have been proved in the linear finite dimensional case. This method is applied to scattering problems and transport of charged particles.
LA - eng
KW - electro-magnetism; Maxwell equations; Vlasov equation; finite volumes
UR - http://eudml.org/doc/194041
ER -

References

top
  1. [1] A. Arsenev, Global existence of a weak solution of Vlasov’s system of equations. USSR Comp. Math. Math. Phys. 15 (1975) 131–143. 
  2. [2] K. Asano and S. Ukai, On the Vlasov-Poisson limit of the Vlasov-Maxwell equation. Pattern and waves. Qualitative analysis of nonlinear differential equations. Stud. Math. Appl. 18 (1986) 369–383. Zbl0623.35059
  3. [3] N. Ben.Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system,. Math. Meth. Appl. Sci. 17 (1994) 451–476. Zbl0806.35172
  4. [4] M. Bezard, Boundary value problems for the Vlasov-Maxwell system, in Semin. Équ. Deriv. Partielles, Ec. Polytech., Cent. Math., Palaiseau Semi 1992–1993, Exp. No. 4 (1993) 17. Zbl0878.35107
  5. [5] B. Bodin, Modélisation et simulation numérique du régime de Child-Langmuir. Thèse de l’École Polytechnique, Palaiseau (1995). 
  6. [6] M. Bostan and F. Poupaud, Periodic solutions of the Vlasov-Poisson system with boundary conditions. C. R. Acad. Sci. Paris, Sér. I 325 (1997) 1333–1336. Zbl0895.35079
  7. [7] M. Bostan and F. Poupaud, Periodic solutions of the Vlasov-Poisson system with boundary conditions. Math. Mod. Meth. Appl. Sci. 10 (1998) 651–672. Zbl1019.76047
  8. [8] M. Bostan and F. Poupaud, Periodic solutions of the 1D Vlasov-Maxwell system with boundary conditions. Math. Meth. Appl. Sci. 23 (2000) 1195–1221. Zbl0965.35010
  9. [9] M.O. Bristeau, R. Glowinski and J. Périaux, Controllability methods for the computation of time periodic solutions; application to scattering. J. Comp. Phys. 147 (1998) 265–292. Zbl0926.65054
  10. [10] J.P. Cioni, Résolution numérique des équations de Maxwell instationnaires par une méthode de volumes finis. Ph.D., Université de Nice Sophia-Antipolis (1995). 
  11. [11] J.P. Cioni, L. Fezoui and D. Issautier, High-order upwind schemes for solving time-domain Maxwell equation. La Recherche Aérospatiale No. 5 (1994) 319–328. 
  12. [12] P. Degond, Regularité de la solution des équations cinétiques en physiques de plasmas, in Semin. Équ. Dériv. Partielles 1985–1986, Exp. No. 18 (1986) 11. Zbl0613.35070
  13. [13] P. Degond, Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity. Math. Methods Appl. Sci. 8 (1986) 533–558. Zbl0619.35088
  14. [14] P. Degond, Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions. Ann. Sci. Ec. Norm. Super. IV. Ser. 19 (1986) 519–542. Zbl0619.35087
  15. [15] R.J. Diperna and P.L. Lions, Global weak solutions of Vlasov-Maxwell system. Comm. Pure Appl. Math. XVII (1989) 729–757. Zbl0698.35128
  16. [16] C. Greengard and P.A. Raviart, A boundary value problem for the stationary Vlasov-Poisson system. Comm. Pure Appl. Math. XLIII (1990) 473–507. Zbl0721.35084
  17. [17] Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions. Comm. Math. Phys. 154 (1993) 245–263. Zbl0787.35072
  18. [18] Y. Guo, Regularity for the Vlasov equation in a half space. Indiana Univ. Math. J. 43 (1994) 255–320. Zbl0799.35031
  19. [19] P.L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105 (1991) 415–430. Zbl0741.35061
  20. [20] R. Löhner and J. Ambrosiano, A finite element solver for the Maxwell equations, in GAMNI-SMAI conference on numerical methods for the solution of Maxwell equations, Paris (1989). 
  21. [21] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in 3 dimensions for general initial data. J. Diff. Eq. 95 (1992) 281–303. Zbl0810.35089
  22. [22] F. Poupaud, Boundary value problems for the stationary Vlasov-Maxwell system. Forum Math. 4 (1992) 499–527. Zbl0785.35020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.