Numerical boundary layers for hyperbolic systems in 1-D

Claire Chainais-Hillairet; Emmanuel Grenier

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2001)

  • Volume: 35, Issue: 1, page 91-106
  • ISSN: 0764-583X

Abstract

top
The aim of this paper is to investigate the stability of boundary layers which appear in numerical solutions of hyperbolic systems of conservation laws in one space dimension on regular meshes. We prove stability under a size condition for Lax Friedrichs type schemes and inconditionnal stability in the scalar case. Examples of unstable boundary layers are also given.

How to cite

top

Chainais-Hillairet, Claire, and Grenier, Emmanuel. "Numerical boundary layers for hyperbolic systems in 1-D." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.1 (2001): 91-106. <http://eudml.org/doc/194046>.

@article{Chainais2001,
abstract = {The aim of this paper is to investigate the stability of boundary layers which appear in numerical solutions of hyperbolic systems of conservation laws in one space dimension on regular meshes. We prove stability under a size condition for Lax Friedrichs type schemes and inconditionnal stability in the scalar case. Examples of unstable boundary layers are also given.},
author = {Chainais-Hillairet, Claire, Grenier, Emmanuel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {boundary layers stability; hyperbolic systems of conservation laws; Lax-Friedrichs scheme; numerical examples},
language = {eng},
number = {1},
pages = {91-106},
publisher = {EDP-Sciences},
title = {Numerical boundary layers for hyperbolic systems in 1-D},
url = {http://eudml.org/doc/194046},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Chainais-Hillairet, Claire
AU - Grenier, Emmanuel
TI - Numerical boundary layers for hyperbolic systems in 1-D
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 1
SP - 91
EP - 106
AB - The aim of this paper is to investigate the stability of boundary layers which appear in numerical solutions of hyperbolic systems of conservation laws in one space dimension on regular meshes. We prove stability under a size condition for Lax Friedrichs type schemes and inconditionnal stability in the scalar case. Examples of unstable boundary layers are also given.
LA - eng
KW - boundary layers stability; hyperbolic systems of conservation laws; Lax-Friedrichs scheme; numerical examples
UR - http://eudml.org/doc/194046
ER -

References

top
  1. [1] C. Bardos, A.-Y. Leroux and J.-C. Nédélec, First order quasilinear equations with boundary conditions. Partial Differential Equations 4 (1979) 1017–1034. Zbl0418.35024
  2. [2] Y. Coudière, J.-P. Vila and P. Villedieu, Convergence of a finite-volume time-explicit scheme for symmetric linear hyperbolic systems on bounded domains. C. R. Acad. Sci. Paris, Sér. I Math. 331 (2000) 95–100. Zbl0960.65095
  3. [3] F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations 71 (1988) 93–122. Zbl0649.35057
  4. [4] M. Gisclon, Étude des conditions aux limites pour un système strictement hyperbolique, via l’approximation parabolique. J. Math. Pures Appl. 75 (1996) 485–508. Zbl0869.35061
  5. [5] M. Gisclon and D. Serre, Étude des conditions aux limites pour un système strictement hyberbolique via l’approximation parabolique. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 377–382. Zbl0808.35075
  6. [6] M. Gisclon and D. Serre, Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov. RAIRO-Modél. Math. Anal. Numér. 31 (1997) 359–380. Zbl0873.65087
  7. [7] J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95 (1986) 325–344. Zbl0631.35058
  8. [8] E. Grenier and O. Guès, Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differential Equations 143 (1998) 110–146. Zbl0896.35078
  9. [9] K.T. Joseph and P.G. LeFloch, Boundary layers in weak solutions of hyperbolic conservation laws. Arch. Ration. Mech. Anal. 147 (1999) 47–88. Zbl0959.35119
  10. [10] T.T. Li and W.C. Yu, Boundary value problems for quasilinear hyperbolic systems. Math. series V. Duke Univ., Durham (1985). Zbl0627.35001
  11. [11] T.P. Liu, Nonlinear stability of shock waves for viscous conservation laws. Mem. Amer. Math. Soc. 56 (1985) 108 p. Zbl0617.35058MR791863
  12. [12] J.B. Rauch and F.J. Massey, III, Differentiability of solutions to hyperbolic initial boundary value problems. Trans. Amer. Math. Soc. 189 (1974) 303–318. Zbl0282.35014
  13. [13] D. Serre, Sur la stabilité des couches limites de viscosité, preprint. Zbl0963.35009MR1821071
  14. [14] M. Shub, A. Fathi and R. Langevin, Global stability of dynamical systems. Springer-Verlag, New-York, Berlin, 1987. MR869255

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.