A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations

Mario Ohlberger

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2001)

  • Volume: 35, Issue: 2, page 355-387
  • ISSN: 0764-583X

Abstract

top
This paper is devoted to the study of a posteriori error estimates for the scalar nonlinear convection-diffusion-reaction equation c t + · ( 𝐮 f ( c ) ) - · ( D c ) + λ c = 0 . The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the L 1 -norm, independent of the diffusion parameter D . The resulting a posteriori error estimate is used to define an grid adaptive solution algorithm for the finite volume scheme. Finally numerical experiments underline the applicability of the theoretical results.

How to cite

top

Ohlberger, Mario. "A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.2 (2001): 355-387. <http://eudml.org/doc/194054>.

@article{Ohlberger2001,
abstract = {This paper is devoted to the study of a posteriori error estimates for the scalar nonlinear convection-diffusion-reaction equation $c_t + \nabla \cdot ( \mathbf \{u\}f(c)) - \nabla \cdot (D \nabla c) + \lambda c = 0$. The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the $L^1$-norm, independent of the diffusion parameter $D$. The resulting a posteriori error estimate is used to define an grid adaptive solution algorithm for the finite volume scheme. Finally numerical experiments underline the applicability of the theoretical results.},
author = {Ohlberger, Mario},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {a posteriori error estimates; convection diffusion reaction equation; finite volume schemes; adaptive methods; unstructured grids; numerical experiments},
language = {eng},
number = {2},
pages = {355-387},
publisher = {EDP-Sciences},
title = {A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations},
url = {http://eudml.org/doc/194054},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Ohlberger, Mario
TI - A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 2
SP - 355
EP - 387
AB - This paper is devoted to the study of a posteriori error estimates for the scalar nonlinear convection-diffusion-reaction equation $c_t + \nabla \cdot ( \mathbf {u}f(c)) - \nabla \cdot (D \nabla c) + \lambda c = 0$. The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the $L^1$-norm, independent of the diffusion parameter $D$. The resulting a posteriori error estimate is used to define an grid adaptive solution algorithm for the finite volume scheme. Finally numerical experiments underline the applicability of the theoretical results.
LA - eng
KW - a posteriori error estimates; convection diffusion reaction equation; finite volume schemes; adaptive methods; unstructured grids; numerical experiments
UR - http://eudml.org/doc/194054
ER -

References

top
  1. [1] L. Angermann, An introduction to finite volume methods for linear elliptic equations of second order. Preprint 164, Institut für Angewandte Mathematik, Universität Erlangen (1995). MR1370105
  2. [2] Lutz Angermann, A finite element method for the numerical solution of convection-dominated anisotropic diffusion equations. Numer. Math. 85 (2000) 175–195. Zbl0956.65107
  3. [3] P. Angot, V. Dolejší, M. Feistauer and J. Felcman, Analysis of a combined barycentric finite volume – finite element method for nonlinear convection diffusion problems. Appl. Math., Praha 43 (1998) 263–311. Zbl0942.76035
  4. [4] I. Babuška and W.C. Rheinboldt, Error estimators for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. Zbl0398.65069
  5. [5] E. Bänsch, Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg. 3 (1991) 181–191. Zbl0744.65074
  6. [6] R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math. 4 (1996) 237–264. Zbl0868.65076
  7. [7] F. Bouchut and B. Perthame, Kruzkov’s estimates for scalar conservation laws revisited. Trans. Amer. Math. Soc. 350 (1998) 2847–2870. Zbl0955.65069
  8. [8] J. Carrillo, Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147 (1999) 269–361. Zbl0935.35056
  9. [9] C. Chainais-Hillairet, Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimates. ESAIM: M2AN 33 (1999) 129–156. Zbl0921.65071
  10. [10] S. Champier, Error estimates for the approximate solution of a nonlinear hyperbolic equation with source term given by finite volume scheme. Preprint, UMR 5585, Saint-Étienne University (1998). Zbl1015.65043MR1901418
  11. [11] G. Chavent and J. Jaffre, Mathematical models and finite elements for reservoir simulation. Elsevier, New York (1986). Zbl0603.76101
  12. [12] B. Cockburn, F. Coquel and P.G. Lefloch, An error estimate for finite volume methods for multidimensional conservation laws. Math. Comput. 63 (1994) 77–103. Zbl0855.65103
  13. [13] B. Cockburn and H. Gau, A posteriori error estimates for general numerical methods for scalar conservation laws. Comput. Appl. Math. 14 (1995) 37–47. Zbl0834.65091
  14. [14] B. Cockburn and P.A. Gremaud, A priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach. Math. Comput. 65 (1996) 533–573. Zbl0848.65067
  15. [15] B. Cockburn and G. Gripenberg, Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations. J. Differential Equations 151 (1999) 231–251. Zbl0921.35017
  16. [16] W. Dörfler, Uniformly convergent finite-element methods for singularly perturbed convection-diffusion equations. Habilitationsschrift, Mathematische Fakultät, Freiburg (1998). 
  17. [17] K. Eriksson and C. Johnson, Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems. Math. Comput. 60 (1993) 167–188. Zbl0795.65074
  18. [18] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. II: Optimal error estimates in L L 2 and L L . SIAM J. Numer. Anal. 32 (1995) 706–740. Zbl0830.65094
  19. [19] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. IV: Nonlinear Problems. SIAM J. Numer. Anal. 32 (1995) 1729–1749. Zbl0835.65116
  20. [20] S. Evje, K.H. Karlsen and N.H. Risebro, A continuous dependence result for nonlinear degenerate parabolic equations with spatial dependent flux function. Preprint, Department of Mathematics, Bergen University (2000). MR1882934
  21. [21] R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solution of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563–594. Zbl0973.65078
  22. [22] R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Preprint LATP 00-20, CMI, Provence University, Marseille (2000). Zbl1005.65099MR1917365
  23. [23] P. Frolkovic, Maximum principle and local mass balance for numerical solutions of transport equations coupled with variable density flow. Acta Math. Univ. Comenian. 67 (1998) 137–157. Zbl0940.76039
  24. [24] J. Fuhrmann and H. Langmach, Stability and existence of solutions of time-implicit finite volume schemes for viscous nonlinear conservation laws. Preprint 437, Weierstraß-Institut, Berlin (1998). Zbl0978.65081MR1825125
  25. [25] R. Helmig, Multiphase flow and transport processes in the subsurface: A contribution to the modeling of hydrosystems. Springer, Berlin, Heidelberg (1997). 
  26. [26] R. Herbin, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods Partial Differential Equation 11 (1995) 165–173. Zbl0822.65085
  27. [27] P. Houston and E. Süli, Adaptive lagrange-galerkin methods for unsteady convection-dominated diffusion problems. Report 95/24, Numerical Analysis Group, Oxford University Computing Laboratory (1995). Zbl0957.65085
  28. [28] J. Jaffre, Décentrage et élements finis mixtes pour les équations de diffusion-convection. Calcolo 21 (1984) 171–197. Zbl0562.65077
  29. [29] V. John, J.M. Maubach and L. Tobiska, Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems. Numer. Math. 78 (1997) 165–188. Zbl0898.65068
  30. [30] C. Johnson, Finite element methods for convection-diffusion problems, in Proc. 5th Int. Symp. (Versailles, 1981), Computing methods in applied sciences and engineering V (1982) 311–323. Zbl0505.76099
  31. [31] K.H. Karlsen and N.H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Preprint 143, Department of Mathematics, Bergen University (2000). Zbl1027.35057MR1974417
  32. [32] D. Kröner, Numerical schemes for conservation laws. Teubner, Stuttgart (1997). Zbl0872.76001MR1437144
  33. [33] D. Kröner and M. Ohlberger, A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions. Math. Comput. 69 (2000) 25–39. Zbl0934.65102
  34. [34] D. Kröner and M. Rokyta, A priori error estimates for upwind finite volume schemes in several space dimensions. Preprint 37, Math. Fakultät, Freiburg (1996). Zbl0872.65093
  35. [35] S.N. Kruzkov, First order quasilinear equations in several independent variables. Math. USSR Sbornik 10 (1970) 217–243. Zbl0215.16203
  36. [36] N.N. Kuznetsov, Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR, Comput. Math. Math. Phys. 16 (1976) 159–193. Zbl0381.35015
  37. [37] J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and measure-valued solutions to evolutionary PDEs, in Applied Mathematics and Mathematical Computation 13, Chapman and Hall, London, Weinheim, New York, Tokyo, Melbourne, Madras (1968). Zbl0851.35002MR1409366
  38. [38] M. Marion and A. Mollard, An adaptive multi–level method for convection diffusion problems. ESAIM: M2AN 34 (2000) 439–458. Zbl0952.65067
  39. [39] R.H. Nochetto, A. Schmidt and C. Verdi, A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comput. 69 (2000) 1–24. Zbl0942.65111
  40. [40] M. Ohlberger, Convergence of a mixed finite element-finite volume method for the two phase flow in porous media. East-West J. Numer. Math. 5 (1997) 183–210. Zbl0899.76261
  41. [41] M. Ohlberger, A posteriori error estimates for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations. Numer. Math. 87 (2001) 737–761. Zbl0973.65076
  42. [42] Ch. Rohde, Entropy solutions for weakly coupled hyperbolic systems in several space dimensions. Z. Angew. Math. Phys. 49 (1998) 470–499. Zbl0906.35058
  43. [43] Ch. Rohde, Upwind finite volume schemes for weakly coupled hyperbolic systems of conservation laws in 2D. Numer. Math. 81 (1998) 85–123. Zbl0918.35086
  44. [44] H.-G. Roos, M. Stynes and L. Tobiska, Numerical methods for singularly perturbed differential equations. Convection-diffusion and flow problems, in Springer Ser. Comput. Math. 24, Springer-Verlag, Berlin (1996). Zbl1155.65087MR1477665
  45. [45] E. Tadmor, Local error estimates for discontinuous solutions of nonlinear hyperbolic equations. SIAM J. Numer. Anal. 28 (1991) 891–906. Zbl0732.65084
  46. [46] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, in Wiley-Teubner Ser. Adv. Numer. Math., Teubner, Stuttgart (1996). Zbl0853.65108
  47. [47] R. Verfürth, A posteriori error estimators for convection-diffusion equations. Numer. Math. 80 (1998) 641–663. Zbl0913.65095
  48. [48] J.P. Vila, Convergence and error estimates in finite volume schemes for general multi-dimensional scalar conservation laws. I Explicit monotone schemes. ESAIM: M2AN 28 (1994) 267–295. Zbl0823.65087

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.