On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation
- Volume: 35, Issue: 3, page 389-405
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topZouraris, Georgios E.. "On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.3 (2001): 389-405. <http://eudml.org/doc/194055>.
@article{Zouraris2001,
abstract = {We discretize the nonlinear Schrödinger equation, with Dirichlet boundary conditions, by a linearly implicit two-step finite element method which conserves the $L^2$ norm. We prove optimal order a priori error estimates in the $L^2$ and $H^1$ norms, under mild mesh conditions for two and three space dimensions.},
author = {Zouraris, Georgios E.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear Schrödinger equation; two-step time discretization; linearly implicit method; finite element method; $L^2$ and $H^1$ error estimates; optimal order of convergence; convergence; error bounds},
language = {eng},
number = {3},
pages = {389-405},
publisher = {EDP-Sciences},
title = {On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation},
url = {http://eudml.org/doc/194055},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Zouraris, Georgios E.
TI - On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 3
SP - 389
EP - 405
AB - We discretize the nonlinear Schrödinger equation, with Dirichlet boundary conditions, by a linearly implicit two-step finite element method which conserves the $L^2$ norm. We prove optimal order a priori error estimates in the $L^2$ and $H^1$ norms, under mild mesh conditions for two and three space dimensions.
LA - eng
KW - nonlinear Schrödinger equation; two-step time discretization; linearly implicit method; finite element method; $L^2$ and $H^1$ error estimates; optimal order of convergence; convergence; error bounds
UR - http://eudml.org/doc/194055
ER -
References
top- [1] S.A. Akhamanov, A.P. Sukhonorov and R.V. Khoklov, Self-focusing and self-trapping of intense light beams in a nonlinear medium. Sov. Phys. JETP 23 (1966) 1025–1033.
- [2] G.D. Akrivis, Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13 (1993) 115–124. Zbl0762.65070
- [3] G.D. Akrivis, V.A. Dougalis and O.A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59 (1991) 31–53. Zbl0739.65096
- [4] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Texts Appl. Math. 15, Springer-Verlag, New York (1994). Zbl0804.65101MR1278258
- [5] H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations. Nonlinear Analysis 4 (1980) 677–681. Zbl0451.35023
- [6] T. Cazenave and A. Haraux, Introduction aux problémes d’évolution semi-linéaires. Ellipses, Paris (1990). Zbl0786.35070
- [7] R.Y. Chiao, E. Garmire and C. Townes, Self-trapping of optical beams. Phys. Rev. Lett. 13 (1964) 479–482.
- [8] A. Cloot, B.M. Herbst and J.A.C. Weideman, A numerical study of the nonlinear Schrödinger equation involving quintic terms. J. Comput. Phys. 86 (1990) 127–146. Zbl0685.65110
- [9] Z. Fei, V.M. Pérez–García and L. Vázquez, Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71 (1995) 165–177. Zbl0832.65136
- [10] Y. Jingqi, Time decay of the solutions to a nonlinear Schrödinger equation in an exterior domain in . Nonlinear Analysis 19 (1992) 563–571. Zbl0776.35071
- [11] O. Karakashian, G.D. Akrivis and V.A. Dougalis, On optimal order error estimates for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 30 (1993) 377–400. Zbl0774.65091
- [12] O. Karakashian and Ch. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: The discontinuous Galerkin method. Math. Comp. 67 (1998) 479–499. Zbl0896.65068
- [13] H.Y. Lee, Fully discrete methods for the nonlinear Schrödinger equation. Comput. Math. Appl. 28 (1994) 9–24. Zbl0808.65133
- [14] H.A. Levine, The role of critical exponents in blowup theorems. SIAM Review 32 (1990) 262–288. Zbl0706.35008
- [15] H. Nawa, Asymptotic profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power nonlinearity. J. Math. Soc. Japan 46 (1994) 557–586. Zbl0829.35121
- [16] A.C. Newell, Solitons in mathematics and mathematical physics. CBMS Appl. Math. Ser. 48, SIAM, Philadelphia (1988). Zbl0565.35003
- [17] J.J. Rasmussen and K. Rypdal, Blow-up in nonlinear Schroedinger equations-I: A general review. Physica Scripta 33 (1986) 481–497. Zbl1063.35545
- [18] M.P. Robinson and G. Fairweather, Orthogonal spline collocation methods for Schrödinger-type equations in one space variable. Numer. Math. 68 (1994) 355–376. Zbl0806.65123
- [19] K. Rypdal and J.J. Rasmussen, Blow-up in nonlinear Schroedinger equations-II: Similarity structure of the blow-up singularity. Physica Scripta 33 (1986) 498–504. Zbl1063.35546
- [20] J.M. Sanz-Serna, Methods for the numerical solution of the nonlinear Schroedinger equation. Math. Comp. 43 (1984) 21–27. Zbl0555.65061
- [21] W.A. Strauss, Nonlinear wave equations. CBMS Regional Conference Series Math. No. 73, AMS, Providence, RI (1989). Zbl0714.35003MR1032250
- [22] V.I. Talanov, Self–focusing of wave beams in nonlinear media. JETP Lett. 2 (1965) 138–141.
- [23] V. Thomée, Galerkin finite–element methods for parabolic problems. Springer Series Comput. Math. 25, Springer-Verlag, Berlin, Heidelberg (1997). Zbl0528.65052
- [24] Y. Tourigny, Optimal H estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11 (1991) 509–523. Zbl0737.65095
- [25] M. Tsutsumi and N. Hayashi, Classical solutions of nonlinear Schrödinger equations in higher dimensions. Math. Z. 177 (1981) 217–234. Zbl0438.35028
- [26] V.E. Zakharov, Collapse of Langmuir waves. Sov. Phys. JETP 35 (1972) 908–922.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.