An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations

Éric Boillat

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2001)

  • Volume: 35, Issue: 4, page 749-765
  • ISSN: 0764-583X

Abstract

top
In this article, we consider the initial value problem which is obtained after a space discretization (with space step h ) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size h chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between h and the time step size τ . Moreover, it is not of excessive algorithmic complexity since it does not require more than one resolution of a linear system at each time step.

How to cite

top

Boillat, Éric. "An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.4 (2001): 749-765. <http://eudml.org/doc/194071>.

@article{Boillat2001,
abstract = {In this article, we consider the initial value problem which is obtained after a space discretization (with space step $h$) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size $h$ chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between $h$ and the time step size $\tau $. Moreover, it is not of excessive algorithmic complexity since it does not require more than one resolution of a linear system at each time step.},
author = {Boillat, Éric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear diffusion equations; nonlinear parabolic problem; Chernoff scheme; implicit scheme for ODE’s; nonlinear parabolic problems; diffusion equations; initial value problem; solidification; multicomponent alloy; global convergence; stability; algorithmic complexity; Chernoff algorithm},
language = {eng},
number = {4},
pages = {749-765},
publisher = {EDP-Sciences},
title = {An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations},
url = {http://eudml.org/doc/194071},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Boillat, Éric
TI - An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 4
SP - 749
EP - 765
AB - In this article, we consider the initial value problem which is obtained after a space discretization (with space step $h$) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size $h$ chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between $h$ and the time step size $\tau $. Moreover, it is not of excessive algorithmic complexity since it does not require more than one resolution of a linear system at each time step.
LA - eng
KW - nonlinear diffusion equations; nonlinear parabolic problem; Chernoff scheme; implicit scheme for ODE’s; nonlinear parabolic problems; diffusion equations; initial value problem; solidification; multicomponent alloy; global convergence; stability; algorithmic complexity; Chernoff algorithm
UR - http://eudml.org/doc/194071
ER -

References

top
  1. [1] A. Friedman, The Stefan problem in several space variables. Trans. Amer. Math. Soc. 132 (1968) 51-87. Zbl0162.41903MR227625
  2. [2] A.E. Berger, H. Brezis and J.C.W. Rogers, A numerical method for solving u t - Δ f ( u ) = 0 . RAIRO. Anal. Numér. 13 (1979) 297-312. Zbl0426.65052MR555381
  3. [3] C.M. Elliott, Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal. 7 (1987) 61-71. Zbl0638.65088MR967835
  4. [4] S.R. De Groot and P. Mazur, Non-equilibrium thermodynamics. North-Holland, Amsterdam (1962). Zbl0041.58401
  5. [5] H. Brezis, Analyse fonctionnelle, Théorie et applications. Masson, Paris (1993). Zbl0511.46001MR697382
  6. [6] H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311-341. Zbl0497.35049MR706391
  7. [7] I. Prigogine, Thermodynamics of irreversible processes. Interscience Publ. (1967). 
  8. [8] J.D.P. Donnelly, A model for non-equilibrium thermodynamic processes involving phase changes. J. Inst. Math. Appl. 24 (1979) 425-438. Zbl0426.35060MR556152
  9. [9] J.F. Ciavaldini, Analyse numérique d’un problème de Stefan à deux phases par une méthode d’éléments finis. SIAM J. Numer. Anal. 12 (1975) 464-487. Zbl0272.65101
  10. [10] J.W. Jerome and M.E. Rose, Error estimates for the multidimensional two-phase Stefan problem. Math. Comp. 39 (1982) 377-414. Zbl0505.65060MR669635
  11. [11] K. Yosida, Functional Analysis. Springer-Verlag, Berlin (1984). 
  12. [12] E. Magenes, Remarques sur l’approximation des problèmes paraboliques non-linéaires, in Analyse Mathématique et Applications, Gauthier-Villars, Paris (1988) 297-318. Zbl0673.35053
  13. [13] E. Magenes, R.H. Nochetto and C. Verdi, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO. Modèl. Math. Anal. Numér. 21 (1987) 655-678. Zbl0635.65123MR921832
  14. [14] M. Crouzeix and A.L. Mignot, Analyse numérique des équations différentielles. Masson (1989). Zbl0635.65079MR762089
  15. [15] G.H. Meyer, Multidimensional Stefan problems. SIAM J. Numer. Anal. 10 (1973) 522-538. Zbl0256.65054MR331807
  16. [16] O. Krüger, Modélisation et analyse numérique de problèmes de réaction-diffusion provenant de la solidification d’alliages binaires. Technical Report 2071, Thèse EPFL (1999). 
  17. [17] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). Zbl0695.35060MR775683
  18. [18] M. Paolini, G. Sacchi and C. Verdi, Finite element approximations of singular parabolic problems. Internat. J. Numer. Methods Engrg. 26 (1988) 1989-2007. Zbl0664.65110MR955582
  19. [19] P.G. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1978). Zbl0383.65058MR520174
  20. [20] J. Rulla, Error analysis for implicit approximations to Cauchy problems. SIAM J. Numer. Anal. 33 (1996) 68-87. Zbl0855.65102MR1377244
  21. [21] V. Thomée, Galerkin finite element methods for Parabolic Problems. Springer-Verlag, Berlin (1984). Zbl0528.65052MR744045
  22. [22] W. Jäger and J. Kačur, Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO. Modèl. Math. Anal. Numér. 29 (1995) 605-627. Zbl0837.65103MR1352864

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.