An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations
- Volume: 35, Issue: 4, page 749-765
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBoillat, Éric. "An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.4 (2001): 749-765. <http://eudml.org/doc/194071>.
@article{Boillat2001,
abstract = {In this article, we consider the initial value problem which is obtained after a space discretization (with space step $h$) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size $h$ chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between $h$ and the time step size $\tau $. Moreover, it is not of excessive algorithmic complexity since it does not require more than one resolution of a linear system at each time step.},
author = {Boillat, Éric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear diffusion equations; nonlinear parabolic problem; Chernoff scheme; implicit scheme for ODE’s; nonlinear parabolic problems; diffusion equations; initial value problem; solidification; multicomponent alloy; global convergence; stability; algorithmic complexity; Chernoff algorithm},
language = {eng},
number = {4},
pages = {749-765},
publisher = {EDP-Sciences},
title = {An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations},
url = {http://eudml.org/doc/194071},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Boillat, Éric
TI - An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 4
SP - 749
EP - 765
AB - In this article, we consider the initial value problem which is obtained after a space discretization (with space step $h$) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size $h$ chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between $h$ and the time step size $\tau $. Moreover, it is not of excessive algorithmic complexity since it does not require more than one resolution of a linear system at each time step.
LA - eng
KW - nonlinear diffusion equations; nonlinear parabolic problem; Chernoff scheme; implicit scheme for ODE’s; nonlinear parabolic problems; diffusion equations; initial value problem; solidification; multicomponent alloy; global convergence; stability; algorithmic complexity; Chernoff algorithm
UR - http://eudml.org/doc/194071
ER -
References
top- [1] A. Friedman, The Stefan problem in several space variables. Trans. Amer. Math. Soc. 132 (1968) 51-87. Zbl0162.41903MR227625
- [2] A.E. Berger, H. Brezis and J.C.W. Rogers, A numerical method for solving . RAIRO. Anal. Numér. 13 (1979) 297-312. Zbl0426.65052MR555381
- [3] C.M. Elliott, Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal. 7 (1987) 61-71. Zbl0638.65088MR967835
- [4] S.R. De Groot and P. Mazur, Non-equilibrium thermodynamics. North-Holland, Amsterdam (1962). Zbl0041.58401
- [5] H. Brezis, Analyse fonctionnelle, Théorie et applications. Masson, Paris (1993). Zbl0511.46001MR697382
- [6] H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311-341. Zbl0497.35049MR706391
- [7] I. Prigogine, Thermodynamics of irreversible processes. Interscience Publ. (1967).
- [8] J.D.P. Donnelly, A model for non-equilibrium thermodynamic processes involving phase changes. J. Inst. Math. Appl. 24 (1979) 425-438. Zbl0426.35060MR556152
- [9] J.F. Ciavaldini, Analyse numérique d’un problème de Stefan à deux phases par une méthode d’éléments finis. SIAM J. Numer. Anal. 12 (1975) 464-487. Zbl0272.65101
- [10] J.W. Jerome and M.E. Rose, Error estimates for the multidimensional two-phase Stefan problem. Math. Comp. 39 (1982) 377-414. Zbl0505.65060MR669635
- [11] K. Yosida, Functional Analysis. Springer-Verlag, Berlin (1984).
- [12] E. Magenes, Remarques sur l’approximation des problèmes paraboliques non-linéaires, in Analyse Mathématique et Applications, Gauthier-Villars, Paris (1988) 297-318. Zbl0673.35053
- [13] E. Magenes, R.H. Nochetto and C. Verdi, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO. Modèl. Math. Anal. Numér. 21 (1987) 655-678. Zbl0635.65123MR921832
- [14] M. Crouzeix and A.L. Mignot, Analyse numérique des équations différentielles. Masson (1989). Zbl0635.65079MR762089
- [15] G.H. Meyer, Multidimensional Stefan problems. SIAM J. Numer. Anal. 10 (1973) 522-538. Zbl0256.65054MR331807
- [16] O. Krüger, Modélisation et analyse numérique de problèmes de réaction-diffusion provenant de la solidification d’alliages binaires. Technical Report 2071, Thèse EPFL (1999).
- [17] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). Zbl0695.35060MR775683
- [18] M. Paolini, G. Sacchi and C. Verdi, Finite element approximations of singular parabolic problems. Internat. J. Numer. Methods Engrg. 26 (1988) 1989-2007. Zbl0664.65110MR955582
- [19] P.G. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1978). Zbl0383.65058MR520174
- [20] J. Rulla, Error analysis for implicit approximations to Cauchy problems. SIAM J. Numer. Anal. 33 (1996) 68-87. Zbl0855.65102MR1377244
- [21] V. Thomée, Galerkin finite element methods for Parabolic Problems. Springer-Verlag, Berlin (1984). Zbl0528.65052MR744045
- [22] W. Jäger and J. Kačur, Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO. Modèl. Math. Anal. Numér. 29 (1995) 605-627. Zbl0837.65103MR1352864
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.