Discrete Sobolev inequalities and error estimates for finite volume solutions of convection diffusion equations
Yves Coudière; Thierry Gallouët; Raphaèle Herbin
- Volume: 35, Issue: 4, page 767-778
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topCoudière, Yves, Gallouët, Thierry, and Herbin, Raphaèle. "Discrete Sobolev inequalities and $L^p$ error estimates for finite volume solutions of convection diffusion equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.4 (2001): 767-778. <http://eudml.org/doc/194072>.
@article{Coudière2001,
abstract = {The topic of this work is to obtain discrete Sobolev inequalities for piecewise constant functions, and to deduce $L^p$ error estimates on the approximate solutions of convection diffusion equations by finite volume schemes.},
author = {Coudière, Yves, Gallouët, Thierry, Herbin, Raphaèle},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite volume methods; $\{L^p\}$ error estimates; unstructured meshes; convection-diffusion equations; error estimates; convergence; discrete Sobolev inequalities},
language = {eng},
number = {4},
pages = {767-778},
publisher = {EDP-Sciences},
title = {Discrete Sobolev inequalities and $L^p$ error estimates for finite volume solutions of convection diffusion equations},
url = {http://eudml.org/doc/194072},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Coudière, Yves
AU - Gallouët, Thierry
AU - Herbin, Raphaèle
TI - Discrete Sobolev inequalities and $L^p$ error estimates for finite volume solutions of convection diffusion equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 4
SP - 767
EP - 778
AB - The topic of this work is to obtain discrete Sobolev inequalities for piecewise constant functions, and to deduce $L^p$ error estimates on the approximate solutions of convection diffusion equations by finite volume schemes.
LA - eng
KW - finite volume methods; ${L^p}$ error estimates; unstructured meshes; convection-diffusion equations; error estimates; convergence; discrete Sobolev inequalities
UR - http://eudml.org/doc/194072
ER -
References
top- [1] R.E. Bank and D.J. Rose, Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777–787. Zbl0634.65105
- [2] R. Belmouhoub, Modélisation tridimensionnelle de la genèse des bassins sédimentaires. Thesis, École Nationale Supérieure des Mines de Paris, France (1996).
- [3] Z. Cai, On the finite volume element method. Numer. Math. 58 (1991) 713–735. Zbl0731.65093
- [4] Z. Cai, Mandel J. and S. Mc Cormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392–402. Zbl0729.65086
- [5] W.J. Coirier and K.G. Powell, A Cartesian, cell-based approach for adaptative-refined solutions of the Euler and Navier-Stokes equations. AIAA J. 0566 (1995).
- [6] M. Dauge, Elliptic boundary value problems in corner domains. Lecture Notes in Math. 1341 Springer-Verlag, Berlin (1988). Zbl0668.35001MR961439
- [7] Y. Coudière and P. Villedieu, A finite volume scheme for the linear convection-diffusion equation on locally refined meshes, in7-th international colloquium on numerical analysis, Plovdiv, Bulgaria (1998).
- [8] Y. Coudière, J.P. Vila and P. Villedieu, Convergence of a finite volume scheme for a diffusion problem, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier Eds., Hermès, Paris (1996) 161–168.
- [9] Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection diffusion problem. ESAIM: M2AN 33 (1999) 493–516. Zbl0937.65116
- [10] Y. Coudière and P. Villedieu, Convergence of a finite volume scheme for a two dimensional diffusion convection equation on locally refined meshes. ESAIM: M2AN 34 (2000) 1109–1295. Zbl0972.65081
- [11] R. Eymard, T. Gallouët and R. Herbin, Convergence of finite volume schemes for semilinear convection diffusion equations. Numerische Mathematik. 82 (1999) 91–116. Zbl0930.65118
- [12] R. Eymard and T. Gallouët, Convergence d’un schéma de type éléments finis-volumes finis pour un système couplé elliptique-hyperbolique. RAIRO Modél. Math. Anal. Numér. 27 (1993) 843–861. Zbl0792.65073
- [13] R. Eymard, T. Gallouët and R. Herbin, The finite volume method, in Handbook of numerical analysis, P.G. Ciarlet and J.L. Lions, Eds., Elsevier Science BV, Amsterdam (2000) 715–1022. Zbl0981.65095
- [14] I. Faille, A control volume method to solve an elliptic equation on a 2D irregular meshing. Comput. Methods Appl. Mech. Engrg. 100 (1992) 275–290. Zbl0761.76068
- [15] P.A. Forsyth, A control volume finite element approach to NAPL groundwater contamination. SIAM J. Sci. Stat. Comput. 12 (1991) 1029–1057. Zbl0725.76087
- [16] P.A. Forsyth and P.H. Sammon, Quadratic convergence for cell-centered grids. Appl. Numer. Math. 4 (1988) 377–394. Zbl0651.65086
- [17] T. Gallouët, R. Herbin and M.H. Vignal, Error estimate for the approximate finite volume solutions of convection diffusion equations with Dirichlet, Neumann or Fourier boundary conditions. SIAM J. Numer. Anal. 37 (2000) 1035–1072. Zbl0986.65099
- [18] B. Heinrich, Finite difference methods on irregular networks. A generalized approach to second order elliptic problems. Internat. Ser. Numer. Math. 82, Birkhäuser-Verlag, Stuttgart (1987). Zbl0623.65096MR875416
- [19] R. Herbin, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods. Partial Differ. Equations 11 (1995) 165–173. Zbl0822.65085
- [20] R. Herbin, Finite volume methods for diffusion convection equations on general meshes, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier, Eds., Hermès, Paris (1996) 153–160.
- [21] F. Jacon and D. Knight, A Navier-Stokes algorithm for turbulent flows using an unstructured grid and flux difference splitting. AIAA J. 2292 (1994).
- [22] R.D. Lazarov and I.D. Mishev, Finite volume methods for reaction diffusion problems, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier, Eds., Hermès, Paris (1996) 233–240 .
- [23] R.D. Lazarov, I.D. Mishev and P.S. Vassilevski, Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33 (1996) 31–55. Zbl0847.65075
- [24] T.A. Manteufel and A.B. White, The numerical solution of second order boundary value problem on non uniform meshes. Math. Comput. 47 (1986) 511–536. Zbl0635.65092
- [25] K.W. Morton and E. Süli, Finite volume methods and their analysis. IMA J. Numer. Anal. 11 (1991) 241–260. Zbl0729.65087
- [26] D. Trujillo, Couplage espace-temps de schémas numériques en simulation de réservoir. Ph.D. Thesis, University of Pau, France (1994).
- [27] P.S. Vassileski, S.I. Petrova and R.D. Lazarov, Finite difference schemes on triangular cell-centered grids with local refinement. SIAM J. Sci. Statist. Comput. 13 (1992) 1287–1313. Zbl0813.65115
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.