# Theoretical and numerical study of a free boundary problem by boundary integral methods

Michel Crouzeix^{[1]}; Philippe Féat; Francisco-Javier Sayas^{[2]}

- [1] Université de Rennes 1 IRMAR, UMR 6625 Campus de Beaulieu 35042 Rennes Cedex FRANCE
- [2] Dep. Matemática Aplicada, Universidad de Zaragoza, Centro Politécnico Superior, c/ María de Luna, 3–50015 Zaragoza, Spain.

- Volume: 35, Issue: 6, page 1137-1158
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topCrouzeix, Michel, Féat, Philippe, and Sayas, Francisco-Javier. "Theoretical and numerical study of a free boundary problem by boundary integral methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.6 (2001): 1137-1158. <http://eudml.org/doc/194089>.

@article{Crouzeix2001,

abstract = {In this paper we study a free boundary problem appearing in electromagnetism and its numerical approximation by means of boundary integral methods. Once the problem is written in a equivalent integro-differential form, with the arc parametrization of the boundary as unknown, we analyse it in this new setting. Then we consider Galerkin and collocation methods with trigonometric polynomial and spline curves as approximate solutions.},

affiliation = {Université de Rennes 1 IRMAR, UMR 6625 Campus de Beaulieu 35042 Rennes Cedex FRANCE; Dep. Matemática Aplicada, Universidad de Zaragoza, Centro Politécnico Superior, c/ María de Luna, 3–50015 Zaragoza, Spain.},

author = {Crouzeix, Michel, Féat, Philippe, Sayas, Francisco-Javier},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},

keywords = {free boundary; spline; trigonometric polynomial; electromagnetic shaping; boundary integral methods; collocation methods with trigonometric polynomial and spline curves},

language = {eng},

number = {6},

pages = {1137-1158},

publisher = {EDP-Sciences},

title = {Theoretical and numerical study of a free boundary problem by boundary integral methods},

url = {http://eudml.org/doc/194089},

volume = {35},

year = {2001},

}

TY - JOUR

AU - Crouzeix, Michel

AU - Féat, Philippe

AU - Sayas, Francisco-Javier

TI - Theoretical and numerical study of a free boundary problem by boundary integral methods

JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

PY - 2001

PB - EDP-Sciences

VL - 35

IS - 6

SP - 1137

EP - 1158

AB - In this paper we study a free boundary problem appearing in electromagnetism and its numerical approximation by means of boundary integral methods. Once the problem is written in a equivalent integro-differential form, with the arc parametrization of the boundary as unknown, we analyse it in this new setting. Then we consider Galerkin and collocation methods with trigonometric polynomial and spline curves as approximate solutions.

LA - eng

KW - free boundary; spline; trigonometric polynomial; electromagnetic shaping; boundary integral methods; collocation methods with trigonometric polynomial and spline curves

UR - http://eudml.org/doc/194089

ER -

## References

top- [1] H.W. Alt and L.A. Caffarelli, Existence and regularity for a minimum problem with a free boundary. J. Reine Angew. Math. 25 (1981) 105–144. Zbl0449.35105
- [2] O. Coulaud and A. Henrot, Numerical approximation of a free boundary problem arising in electromagnetic shaping. SIAM J. Numer. Anal. 31 (1994) 1109–1127. Zbl0804.65129
- [3] M. Crouzeix, Variational approach of magnetic shaping problem. Eur. J. Mech. B/Fluids 10 (1991) 627–536. Zbl0741.76089
- [4] J. Descloux, Stability of solutions of the bidimensional magnetic shaping problem in absence of surface tension. Eur. J. Mech. B/Fluids 10 (1991) 513–526. Zbl0741.76025
- [5] Ph. Féat, Approximation d’un problème de frontière libre bidimensionnel. Thèse de l’Université de Rennes I, France (1998).
- [6] A. Friedman, Variational Principles and Free Boundary Problems. John Wiley & Sons, New York (1982). Zbl0564.49002MR679313
- [7] B. Gustafsson and H. Shagholian, Existence and geometric properties of solutions of a free boundary problem in potential theory. J. Reine Angew. Math. 68 (1996) 137–179. Zbl0846.31005
- [8] A. Henrot, Subsolutions and supersolutions in a free boundary problem. Ark. Mat. 32 (1994) 79–98. Zbl0809.35172
- [9] A. Henrot and M. Pierre, Un problème inverse en formage des métaux liquides. RAIRO Modél. Math. Anal. Numér. 23 (1989) 155–177. Zbl0672.65101
- [10] R. Kress, Linear Integral Equations. Springer, New York (1989). Zbl0671.45001MR1007594
- [11] W. McLean and W.L. Wendland, Trigonometric approximation of solutions of periodic pseudodifferential equations. Oper. Theory: Adv. Appl. 41 (1989) 359–383. Zbl0693.65093
- [12] S. Mikhlin and S. Prößdorf, Singular Integral Operators. Springer-Verlag, Berlin (1986). Zbl0612.47024MR867687
- [13] X. Pelgrin, Un problème de frontière libre. Thèse de l’Université de Rennes I, France (1994).
- [14] M. Pierre and J.R. Roche, Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer. Math. 65 (1993) 203–217. Zbl0792.65096
- [15] S. Prößdorf and B. Silbermann, Numerical Analysis for Integral and Related Operator Equations. Akademie-Verlag, Berlin (1991). Zbl0763.65103MR1193030
- [16] J. Saranen and L. Schroderus, Quadrature methods for strongly elliptic equations of negative order on smooth closed curves. SIAM J. Numer. Anal. 30 (1993) 1769–1795. Zbl0796.65124
- [17] Y. Yan and I.H. Sloan, On integral equations of the first kind with logarithmic kernels. J. Integral Equations. Appl. 1 (1988) 549–579. Zbl0682.45001

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.