Galerkin time-stepping methods for nonlinear parabolic equations
Georgios Akrivis; Charalambos Makridakis
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 38, Issue: 2, page 261-289
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topAkrivis, Georgios, and Makridakis, Charalambos. "Galerkin time-stepping methods for nonlinear parabolic equations." ESAIM: Mathematical Modelling and Numerical Analysis 38.2 (2010): 261-289. <http://eudml.org/doc/194214>.
@article{Akrivis2010,
abstract = {
We consider discontinuous as well as continuous Galerkin
methods for the time discretization of a class of nonlinear
parabolic equations. We show existence and local uniqueness
and derive optimal order optimal regularity a priori error
estimates. We establish the results in an abstract Hilbert space
setting and apply them to a quasilinear parabolic equation.
},
author = {Akrivis, Georgios, Makridakis, Charalambos},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Nonlinear parabolic equations; local Lipschitz condition;
continuous and discontinuous Galerkin methods; a priori error
analysis; monotone operators.; discontinuous and continuous Galerkin methods; nonlinear parabolic equations; space-time finite element; time discretization; numerical examples},
language = {eng},
month = {3},
number = {2},
pages = {261-289},
publisher = {EDP Sciences},
title = {Galerkin time-stepping methods for nonlinear parabolic equations},
url = {http://eudml.org/doc/194214},
volume = {38},
year = {2010},
}
TY - JOUR
AU - Akrivis, Georgios
AU - Makridakis, Charalambos
TI - Galerkin time-stepping methods for nonlinear parabolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 38
IS - 2
SP - 261
EP - 289
AB -
We consider discontinuous as well as continuous Galerkin
methods for the time discretization of a class of nonlinear
parabolic equations. We show existence and local uniqueness
and derive optimal order optimal regularity a priori error
estimates. We establish the results in an abstract Hilbert space
setting and apply them to a quasilinear parabolic equation.
LA - eng
KW - Nonlinear parabolic equations; local Lipschitz condition;
continuous and discontinuous Galerkin methods; a priori error
analysis; monotone operators.; discontinuous and continuous Galerkin methods; nonlinear parabolic equations; space-time finite element; time discretization; numerical examples
UR - http://eudml.org/doc/194214
ER -
References
top- G. Akrivis and M. Crouzeix, Linearly implicit methods for nonlinear parabolic equations. Math. Comp.73 (2004) 613–635.
- G. Akrivis and C. Makridakis, Convergence of a time discrete Galerkin method for semilinear parabolic equations. Preprint (2002).
- G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comp. 67 (1998) 457–477.
- G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82 (1999) 521–541.
- A.K. Aziz and P. Monk, Continuous finite elements in space and time for the heat equation. Math. Comp. 52 (1989) 255–274.
- J.H. Bramble and P.H. Sammon, Efficient higher order single step methods for parabolic problems: Part I, Math. Comp. 35 (1980) 655–677.
- G.A. Baker and J. H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations. RAIRO Anal. Numér. 13 (1979) 75–100.
- K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43–77.
- K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729–1749.
- K. Eriksson, C. Johnson and S. Larsson, Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35 (1998) 1315–1325.
- D. Estep and S. Larsson, The discontinuous Galerkin method for semilinear parabolic problems. RAIRO Modél. Math. Anal. Numér. 27 (1993) 35–54.
- P. Jamet, Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15 (1978) 912–928.
- C. Johnson, Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 107 (1993) 117–129.
- C. Johnson, Y.-Y. Nie and V. Thomée, An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27 (1990) 277–291.
- C. Johnson and A. Szepessy, Adaptive finite element methods for conservation laws based on a posteriori error estimates. Comm. Pure Appl. Math. 48 (1995) 199–234.
- O. Karakashian and C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comp. 67 (1998) 479–499.
- O. Karakashian and C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method, SIAM J. Numer. Anal. 36 (1999) 1779–1807.
- O. Karakashian and C. Makridakis, Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations. Math. Comp. (to appear).
- C. Makridakis and I. Babuška, On the stability of the discontinuous Galerkin method for the heat equation. SIAM J. Numer. Anal. 34 (1997) 389–401.
- C. Makridakis and R.H. Nochetto, A posteriori error estimates for a class of dissipative schemes for nonlinear evolution equations. Preprint (2002).
- R.H. Nochetto, A. Schmidt and C. Verdi, A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comp. 69 (2000) 1–24.
- R.H. Nochetto, G. Savaré and C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53 (2000) 525–589.
- A.H. Schatz and L.B. Wahlbin, Interior maximum-norm estimates for finite element methods: Part II. Math. Comp. 64 (1995) 907–928.
- V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (1997).
Citations in EuDML Documents
top- Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou, Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system
- Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou, Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system
- Konstantinos Chrysafinos, Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's
- Monika Balázsová, Miloslav Feistauer, On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
- Martin Balazovjech, Miloslav Feistauer, Jaromír Horáček, Martin Hadrava, Adam Kosík, Space-time discontinuous Galerkin method for the solution of fluid-structure interaction
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.