Galerkin time-stepping methods for nonlinear parabolic equations

Georgios Akrivis; Charalambos Makridakis

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 38, Issue: 2, page 261-289
  • ISSN: 0764-583X

Abstract

top
We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.

How to cite

top

Akrivis, Georgios, and Makridakis, Charalambos. "Galerkin time-stepping methods for nonlinear parabolic equations." ESAIM: Mathematical Modelling and Numerical Analysis 38.2 (2010): 261-289. <http://eudml.org/doc/194214>.

@article{Akrivis2010,
abstract = { We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation. },
author = {Akrivis, Georgios, Makridakis, Charalambos},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Nonlinear parabolic equations; local Lipschitz condition; continuous and discontinuous Galerkin methods; a priori error analysis; monotone operators.; discontinuous and continuous Galerkin methods; nonlinear parabolic equations; space-time finite element; time discretization; numerical examples},
language = {eng},
month = {3},
number = {2},
pages = {261-289},
publisher = {EDP Sciences},
title = {Galerkin time-stepping methods for nonlinear parabolic equations},
url = {http://eudml.org/doc/194214},
volume = {38},
year = {2010},
}

TY - JOUR
AU - Akrivis, Georgios
AU - Makridakis, Charalambos
TI - Galerkin time-stepping methods for nonlinear parabolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 38
IS - 2
SP - 261
EP - 289
AB - We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.
LA - eng
KW - Nonlinear parabolic equations; local Lipschitz condition; continuous and discontinuous Galerkin methods; a priori error analysis; monotone operators.; discontinuous and continuous Galerkin methods; nonlinear parabolic equations; space-time finite element; time discretization; numerical examples
UR - http://eudml.org/doc/194214
ER -

References

top
  1. G. Akrivis and M. Crouzeix, Linearly implicit methods for nonlinear parabolic equations. Math. Comp.73 (2004) 613–635.  
  2. G. Akrivis and C. Makridakis, Convergence of a time discrete Galerkin method for semilinear parabolic equations. Preprint (2002).  
  3. G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comp. 67 (1998) 457–477.  
  4. G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82 (1999) 521–541.  
  5. A.K. Aziz and P. Monk, Continuous finite elements in space and time for the heat equation. Math. Comp. 52 (1989) 255–274.  
  6. J.H. Bramble and P.H. Sammon, Efficient higher order single step methods for parabolic problems: Part I, Math. Comp. 35 (1980) 655–677.  
  7. G.A. Baker and J. H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations. RAIRO Anal. Numér. 13 (1979) 75–100.  
  8. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43–77.  
  9. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729–1749.  
  10. K. Eriksson, C. Johnson and S. Larsson, Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35 (1998) 1315–1325.  
  11. D. Estep and S. Larsson, The discontinuous Galerkin method for semilinear parabolic problems. RAIRO Modél. Math. Anal. Numér. 27 (1993) 35–54.  
  12. P. Jamet, Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15 (1978) 912–928.  
  13. C. Johnson, Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 107 (1993) 117–129.  
  14. C. Johnson, Y.-Y. Nie and V. Thomée, An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27 (1990) 277–291.  
  15. C. Johnson and A. Szepessy, Adaptive finite element methods for conservation laws based on a posteriori error estimates. Comm. Pure Appl. Math. 48 (1995) 199–234.  
  16. O. Karakashian and C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comp. 67 (1998) 479–499.  
  17. O. Karakashian and C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method, SIAM J. Numer. Anal. 36 (1999) 1779–1807.  
  18. O. Karakashian and C. Makridakis, Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations. Math. Comp. (to appear).  
  19. C. Makridakis and I. Babuška, On the stability of the discontinuous Galerkin method for the heat equation. SIAM J. Numer. Anal. 34 (1997) 389–401.  
  20. C. Makridakis and R.H. Nochetto, A posteriori error estimates for a class of dissipative schemes for nonlinear evolution equations. Preprint (2002).  
  21. R.H. Nochetto, A. Schmidt and C. Verdi, A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comp. 69 (2000) 1–24.  
  22. R.H. Nochetto, G. Savaré and C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53 (2000) 525–589.  
  23. A.H. Schatz and L.B. Wahlbin, Interior maximum-norm estimates for finite element methods: Part II. Math. Comp. 64 (1995) 907–928.  
  24. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (1997).  

Citations in EuDML Documents

top
  1. Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou, Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system
  2. Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou, Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system
  3. Konstantinos Chrysafinos, Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's
  4. Monika Balázsová, Miloslav Feistauer, On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
  5. Martin Balazovjech, Miloslav Feistauer, Jaromír Horáček, Martin Hadrava, Adam Kosík, Space-time discontinuous Galerkin method for the solution of fluid-structure interaction

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.