A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media
María-Luisa Rapún; Francisco-Javier Sayas
ESAIM: Mathematical Modelling and Numerical Analysis (2007)
- Volume: 40, Issue: 5, page 871-896
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- D.P. Almond and P.M. Patel, Photothermal science and techniques. Chapman and Hall, London (1996).
- J.-P. Aubin, Approximation of elliptic boundary-value problems. Wiley-Interscience, New York-London-Sydney (1972).
- H.T. Banks, F. Kojima and W.P. Winfree, Boundary estimation problems arising in thermal tomography. Inverse Problems6 (1990) 897–921.
- F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991).
- F. Brezzi and C. Johnson, On the coupling of boundary integral and finite element methods. Calcolo16 (1979) 189–201.
- G. Chen and J. Zhou, Boundary element methods. Academic Press, London (1992).
- M. Costabel, Symmetric methods for the coupling of finite elements and boundary elements. Boundary elements IX, Vol. 1 (Stuttgart, 1987), Comput. Mech. (1987) 411–420.
- M. Costabel and E. Stephan, A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl.106 (1985) 367–413.
- M. Crouzeix and F.-J. Sayas, Asymptotic expansions of the error of spline Galerkin boundary element methods. Numer. Math.78 (1998) 523–547.
- F. Garrido and A. Salazar, Thermal wave scattering by spheres. J. Appl. Phys.95 (2004) 140–149.
- G.N. Gatica and G.C. Hsiao, On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in . Numer. Math.61 (1992) 171–214.
- G.N. Gatica and G.C. Hsiao, Boundary-field equation methods for a class of nonlinear problems. Pitman Research Notes in Mathematics Series 331, Longman Scientific and Technical, Harlow, UK (1995).
- G.N. Gatica and S. Meddahi, A dual-dual mixed formulation for nonlinear exterior transmission problems. Math. Comp.70 (2001) 1461–1480.
- V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations. Theory and algorithms. Springer-Verlag, New York (1986).
- H. Han, A new class of variational formulations for the coupling of finite and boundary element methods. J. Comput. Math.8 (1990) 223–232.
- T. Hohage, M.-L. Rapún and F.-J. Sayas, Detecting corrosion using thermal measurements. Inverse Probl. (to appear).
- G.C. Hsiao, The coupling of BEM and FEM – a brief review. Boundary elements X, Vol 1 (Southampton, 1988). Comput. Mech. (1988) 431–445.
- G.C. Hsiao, P. Kopp and W.L. Wendland, A Galerkin collocation method for some integral equations of the first kind. Computing25 (1980) 89–130.
- G.C. Hsiao, P. Kopp and W.L. Wendland, Some applications of a Galerkin-collocation method for boundary integral equations of the first kind. Math. Method. Appl. Sci.6 (1984) 280–325.
- C. Johnson and J.-C. Nédélec, On the coupling of boundary integral and finite element methods. Math. Comp.35 (1980) 1063–1079.
- R.E. Kleinman and P.A. Martin, On single integral equations for the transmission problem of acoustics. SIAM J. Appl. Math48 (1988) 307–325.
- R. Kress, Linear integral equations. Second edition. Springer-Verlag, New York (1999).
- R. Kress and G.F. Roach, Transmission problems for the Helmholtz equation. J. Math. Phys.19 (1978) 1433–1437.
- M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Num Anal.23 (1986) 562–580.
- A. Mandelis, Photoacoustic and thermal wave phenomena in semiconductors. North-Holland, New York (1987).
- A. Mandelis, Diffusion-wave fields. Mathematical methods and Green functions. Springer-Verlag, New York (2001).
- A. Márquez, S. Meddahi and V. Selgas, A new BEM-FEM coupling strategy for two-dimensional fluid-solid interaction problems. J. Comput. Phys.199 (2004) 205–220.
- W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000).
- S. Meddahi, A mixed-FEM and BEM coupling for a two-dimensional eddy current problem. Numer. Funct. Anal. Optim.22 (2001) 127–141.
- S. Meddahi and A. Márquez, A combination of spectral and finite elements for an exterior problem in the plane. Appl. Numer. Math.43 (2002) 275–295.
- S. Meddahi and F.-J. Sayas, A fully discrete BEM-FEM for the exterior Stokes problem in the plane. SIAM J. Numer. Anal.37 (2000) 2082–2102.
- S. Meddahi and F.-J. Sayas, Analysis of a new BEM-FEM coupling for two-dimensional fluid-solid interaction. Numer. Methods Partial Differ. Equ.21 (2005) 1017–1042.
- S. Meddahi and V. Selgas, A mixed-FEM and BEM coupling for a three-dimensional eddy current problem. ESAIM: M2AN37 (2003) 291–318.
- S. Meddahi, J. Valdés, O. Menéndez and P. Pérez, On the coupling of boundary integral and mixed finite element methods. J. Comput. Appl. Math.69 (1996) 113–124.
- S. Meddahi, A. Márquez and V. Selgas, Computing acoustic waves in an inhomogeneous medium of the plane by a coupling of spectral and finite elements. SIAM J. Numer. Anal.41 (2003) 1729–1750.
- S.G. Mikhlin, Mathematical Physics, an advanced course. North-Holland, Amsterdam-London (1970).
- L. Nicolaides and A. Mandelis, Image-enhanced thermal-wave slice diffraction tomography with numerically simulated reconstructions. Inverse problems13 (1997) 1393–1412.
- M.-L. Rapún, Numerical methods for the study of the scattering of thermal waves. Ph.D. Thesis, University of Zaragoza, (2004). In Spanish.
- M.-L. Rapún and F.-J. Sayas, Boundary integral approximation of a heat diffusion problem in time-harmonic regime. Numer. Algorithms41 (2006) 127–160.
- F.-J. Sayas, A nodal coupling of finite and boundary elements. Numer. Methods Partial Differ. Equ.19 (2003) 555–570.
- J.M. Terrón, A. Salazar and A. Sánchez-Lavega, General solution for the thermal wave scattering in fiber composites. J. Appl. Phys.91 (2002) 1087–1098.
- R.H. Torres and G.V. Welland, The Helmholtz equation and transmission problems with Lipschitz interfaces. Indiana Univ. Math. J.42 (1993) 1457–1485.
- T. von Petersdorff, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Methods Appl. Sci.11 (1989) 185–213.
- A. Ženišek, Nonlinear elliptic and evolution problems and their finite element approximations. Academic Press, London (1990).
- M. Zlámal, Curved elements in the finite element method I. SIAM J. Numer. Anal.10 (1973) 229–240.
- M. Zlámal, Curved elements in the finite element method II. SIAM J. Numer. Anal.11 (1974) 347–362.