Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients
ESAIM: Mathematical Modelling and Numerical Analysis (2007)
- Volume: 40, Issue: 6, page 991-1021
 - ISSN: 0764-583X
 
Access Full Article
topAbstract
topHow to cite
topBerrone, Stefano. "Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients." ESAIM: Mathematical Modelling and Numerical Analysis 40.6 (2007): 991-1021. <http://eudml.org/doc/194348>.
@article{Berrone2007,
	abstract = {
In this work we derive a posteriori error estimates based
on equations residuals for the heat equation with discontinuous
diffusivity coefficients. The estimates are based on a fully discrete
scheme based on conforming finite elements in each time slab and
on the A-stable θ-scheme with 1/2 ≤ θ ≤ 1.
Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237; Verfürth, Calcolo40 (2003) 195–212] it is easy
to identify a time-discretization error-estimator
and a space-discretization error-estimator. In this work we introduce a similar
splitting for the data-approximation error in time and in space. Assuming the quasi-monotonicity condition [Dryja et al., Numer. Math.72 (1996) 313–348; Petzoldt, Adv. Comput. Math.16 (2002) 47–75] we have upper and lower bounds
whose ratio is independent of any meshsize, timestep, problem parameter and its jumps.
},
	author = {Berrone, Stefano},
	journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
	keywords = {A posteriori error estimates; parabolic problems; discontinuous coefficients.; a posteriori error estimates; finite elements; discontinuous coefficients; heat equation},
	language = {eng},
	month = {2},
	number = {6},
	pages = {991-1021},
	publisher = {EDP Sciences},
	title = {Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients},
	url = {http://eudml.org/doc/194348},
	volume = {40},
	year = {2007},
}
TY  - JOUR
AU  - Berrone, Stefano
TI  - Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients
JO  - ESAIM: Mathematical Modelling and Numerical Analysis
DA  - 2007/2//
PB  - EDP Sciences
VL  - 40
IS  - 6
SP  - 991
EP  - 1021
AB  - 
In this work we derive a posteriori error estimates based
on equations residuals for the heat equation with discontinuous
diffusivity coefficients. The estimates are based on a fully discrete
scheme based on conforming finite elements in each time slab and
on the A-stable θ-scheme with 1/2 ≤ θ ≤ 1.
Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237; Verfürth, Calcolo40 (2003) 195–212] it is easy
to identify a time-discretization error-estimator
and a space-discretization error-estimator. In this work we introduce a similar
splitting for the data-approximation error in time and in space. Assuming the quasi-monotonicity condition [Dryja et al., Numer. Math.72 (1996) 313–348; Petzoldt, Adv. Comput. Math.16 (2002) 47–75] we have upper and lower bounds
whose ratio is independent of any meshsize, timestep, problem parameter and its jumps.
LA  - eng
KW  - A posteriori error estimates; parabolic problems; discontinuous coefficients.; a posteriori error estimates; finite elements; discontinuous coefficients; heat equation
UR  - http://eudml.org/doc/194348
ER  - 
References
top- I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element method. SIAM J. Numer. Anal.15 (1978) 736–754.
 - R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods. Acta Num. (2001) 1–102.
 - A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp.74 (2004) 1117–1138.
 - C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math.85 (2000) 579–608.
 - P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam (1978).
 - P. Clément, Approximation by finite element functions using local regularization. RAIRO Sér. Rouge Anal. Numér.9 (1975) 77–84.
 - W. Dörfler, A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal.33 (1996) 1106–1124.
 - M. Dryja, M.V. Sarkis and O.B. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math.72 (1996) 313–348.
 - K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. V. Long-time integration. SIAM J. Numer. Anal.32 (1995) 1750–1763.
 - K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations. Acta Num. (1995) 105–158.
 - B.S. Kirk, J.W. Peterson, R. Stogner and S. Petersen, LibMesh. The University of Texas, Austin, CFDLab and Technische Universität Hamburg, Hamburg. . URIhttp://libmesh.sourceforge.net
 - P. Morin, R.H. Nocetto and K.G. Siebert, Convergence of adaptive finite element methods. SIAM Rev.44 (2002) 631–658.
 - M. Petzoldt, A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math.16 (2002) 47–75.
 - M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg.167 (1998) 223–237.
 - R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of parabolic equations. Ruhr-Universität Bochum, Report 180/1995.
 - R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. John Wiley & Sons, Chichester-New York (1996).
 - R. Verfürth, A posteriori error estimates for finite element discretization of the heat equations. Calcolo40 (2003) 195–212.
 - O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg.24 (1987) 337–357.
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.