Funzioni semiconcave, singolarità e pile di sabbia

Piermarco Cannarsa

Bollettino dell'Unione Matematica Italiana (2005)

  • Volume: 8-B, Issue: 3, page 549-567
  • ISSN: 0392-4041

Abstract

top
Semiconcavity is a natural generalization of concavity that retains most of the good properties known in convex analysis, but arises in a wider range of applications. This is a survey of the main properties of semiconcave functions which emphasizes the study of singularities. An application to a dynamic model for granular matter will be discussed.

How to cite

top

Cannarsa, Piermarco. "Funzioni semiconcave, singolarità e pile di sabbia." Bollettino dell'Unione Matematica Italiana 8-B.3 (2005): 549-567. <http://eudml.org/doc/195095>.

@article{Cannarsa2005,
abstract = {La semiconcavità è una nozione che generalizza quella di concavità conservandone la maggior parte delle proprietà ma permettendo di ampliarne le applicazioni. Questa è una rassegna dei punti più salienti della teoria delle funzioni semiconcave, con particolare riguardo allo studio dei loro insiemi singolari. Come applicazione, si discuterà una formula di rappresentazione per la soluzione di un modello dinamico per la materia granulare.},
author = {Cannarsa, Piermarco},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {10},
number = {3},
pages = {549-567},
publisher = {Unione Matematica Italiana},
title = {Funzioni semiconcave, singolarità e pile di sabbia},
url = {http://eudml.org/doc/195095},
volume = {8-B},
year = {2005},
}

TY - JOUR
AU - Cannarsa, Piermarco
TI - Funzioni semiconcave, singolarità e pile di sabbia
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/10//
PB - Unione Matematica Italiana
VL - 8-B
IS - 3
SP - 549
EP - 567
AB - La semiconcavità è una nozione che generalizza quella di concavità conservandone la maggior parte delle proprietà ma permettendo di ampliarne le applicazioni. Questa è una rassegna dei punti più salienti della teoria delle funzioni semiconcave, con particolare riguardo allo studio dei loro insiemi singolari. Come applicazione, si discuterà una formula di rappresentazione per la soluzione di un modello dinamico per la materia granulare.
LA - ita
UR - http://eudml.org/doc/195095
ER -

References

top
  1. ALBANO, P. - CANNARSA, P., Structural properties of singularities of semiconcave functions, Annali Scuola Norm. Sup. Pisa Sci. Fis. Mat., 28 (1999), 719-740. Zbl0957.26002MR1760538
  2. ALBANO, P. - CANNARSA, P., Propagation of singularities for solutions of nonlinear first order partial differential equations, Arch. Ration. Mech. Anal., 162 (2002), 1-23. Zbl1043.35052MR1892229
  3. ALBERTI, G. - AMBROSIO, L. - CANNARSA, P., On the singularities of convex functions, Manuscripta Math., 76 (1992), 421-435. Zbl0784.49011MR1185029
  4. AMBROSIO, L., Optimal transport maps in Monge-Kantorovich problem, in Proceedings of the International Congress of Mathematicians, vol. III (Beijing 2002), Higher Ed. Press, Beijing, 2002, 131-140. Zbl1005.49030MR1957525
  5. ARONSON, D. G., The porous medium equation, in Some problems on nonlinear diffusion ( FasanoA. and PrimicerioM., Eds.), Lect. Notes Math.1224, Springer, 1986, 1-46. Zbl0626.76097MR877986
  6. BARDI, M. - CAPUZZO DOLCETTA, I., Optimal control and viscosity solutions of Hamilton-Jacobi equations, Birkhäuser, Boston, 1997. Zbl0890.49011MR1484411
  7. BHATTACHARYA, T. - DI BENEDETTO, E. - MANFREDI, J., (1991) Limits as p of Δ p u p = f and related extremal problems, Some topics in nonlinear PDEs (Turin, 1989). Rend. Sem. Mat. Univ. Politec. Torino, 1989, 15-68. MR1155453
  8. BOUCHITTÉ, G. - BUTTAZZO, G., Characterization of optimal shapes and masses through Monge-Kantorovich equation, J. Eur. Math. Soc., 3, No. 2 (2001), 139-168. Zbl0982.49025MR1831873
  9. BOUTREUX, T. - DE GENNES, P.-G., Surface flows of granular mixtures, I. General principles and minimal model, J. Phys. I France, 6 (1996), 1295-1304. 
  10. CANNARSA, P. - CARDALIAGUET, P., Representation of equilibrium solutions to the table problem for growing sandpile, J. Eur. Math. Soc., 6 (2004), 1-30. Zbl1084.35015MR2094399
  11. CANNARSA, P. - CARDALIAGUET, P. - CRASTA, G. - GIORGIERI, E., A boundary value problem for a PDE model in mass transfer theory: representation of solutions and applications, pre-print. Zbl1089.35076
  12. CANNARSA, P. - CARDALIAGUET, P. - GIORGIERI, E., The table problem for granular matter: regularity of solutions, pre-print. 
  13. CANNARSA, P. - SINESTRARI, C., Semiconcave functions, Hamilton-Jacobi equations and optimal control, Birkhäuser, Boston, 2004. Zbl1095.49003MR2041617
  14. CHOI, H. I. - CHOI, S. W. - MOON, H. P., Mathematical theory of medial axis transform, Pac. J. Math., 181 (1997), 57-88. Zbl0885.53004MR1491036
  15. CLARKE, F. H., Optimization and nonsmooth analysis, Wiley, New York, 1983. Zbl0582.49001MR709590
  16. DOUGLIS, A., The continuous dependence of generalized solutions of non-linear partial differential equations upon initial data, Comm. Pure Appl. Math., 14 (1961), 267-284. Zbl0117.31102MR139848
  17. ERDÖS, P., Some remarks on the measurability of certain sets, Bull. Amer. Math. Soc., 51 (1945), 728-731. Zbl0063.01269MR13776
  18. EVANS, L. C., Partial Differential Equations, A.M.S., Providence, 1998. Zbl1194.35001
  19. EVANS, L. C. - FELDMAN, M. - GARIEPY, R., Fast/slow diffusion and collapsing sandpiles, J. Differential Equations, 137, no. 1 (1997), 166-209. Zbl0879.35019MR1451539
  20. EVANS, L. C. - GANGBO, W., Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137, no. 653, 1999. Zbl0920.49004MR1464149
  21. FLEMING, W. H., The Cauchy problem for a nonlinear first order partial differential equation, J. Diff. Eq., 5 (1969), 515-530. Zbl0172.13901MR235269
  22. FLEMING, W. H. - MCENEANEY, W. M., A max-plus based algorithm for an HJB equation of nonlinear filtering, SIAM J. Control Optim., 38 (2000), 683-710. Zbl0949.35039MR1741434
  23. FLEMING, W. H. - SONER, H. M., Controlled Markov processes and viscosity solutions, Springer Verlag, Berlin, 1993. Zbl1105.60005MR1199811
  24. FU, J. H. G., Tubular neighborhoods in Euclidean spaces, Duke Math. J., 52 (1985), 1025-1046. Zbl0592.52002MR816398
  25. HADELER, K. P. - KUTTLER, C., Dynamical models for granular matter, Granular Matter, 2 (1999), 9-18. 
  26. ITOH, J. - TANAKA, M., The Lipschitz continuity of the distance function to the cut locus, Trans. Am. Math. Soc., 353, No. 1 (2001), 21-40. Zbl0971.53031MR1695025
  27. JANFALK, U., Behaviour in the limit, as p + , of minimizers of functionals involving p-Dirichlet integrals, SIAM J. Math. Anal., 27, no. 2 (1996), 341-360. Zbl0853.35028MR1377478
  28. KRUZHKOV, S. N., The Cauchy problem in the large for certain nonlinear first order differential equations, Soviet. Math. Dokl., 1 (1960), 474-477. Zbl0128.32303MR121575
  29. KRUZHKOV, S. N., The Cauchy problem in the large for nonlinear equations and for certain quasilinear systems of the first order with several variables, Soviet. Math. Dokl., 5 (1964), 493-496. Zbl0138.34702
  30. KRUZHKOV, S. N., Generalized solutions of the Hamilton–Jacobi equations of the eikonal type I, Math. USSR Sb., 27 (1975), 406-445. Zbl0369.35012
  31. LI, X. J. - YONG, J. M.Optimal control theory for infinite-dimensional systems, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, 1995. Zbl0817.49001MR1312364
  32. LIONS, P. L., Generalized solutions of Hamilton-Jacobi equations, Pitman, Boston, 1982. Zbl0497.35001MR667669
  33. MOTZKIN, T., Sur quelques propriétés caractéristiques des ensembles convexes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 21 (1935), 562-567. Zbl0011.41105
  34. LI, Y. Y. - NIRENBERG, L., The distance function to the boundary, Finsler geometry and the singular set of viscosity solutions of some Hamilton-Jacobi equations, pre-print. Zbl1062.49021
  35. PRIGOZHIN, L., Variational model of sandpile growth, European J. Appl. Math., 7, no. 3 (1996), 225-235. Zbl0913.73079MR1401168
  36. RIFFORD, L., Existence of Lipschitz and semiconcave control-Lyapunov functions, SIAM J. Control Optim., 39 (2000), 1043-1064. Zbl0982.93068MR1814266
  37. RIFFORD, L., Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM J. Control Optim., 41 (2002), 659-681. Zbl1034.93053MR1939865
  38. ROCKAFELLAR, R. T., Favorable classes of Lipschitz continuous functions in subgradient optimization, in Progress in Nondifferential Optimization ( NurminskiE., Ed.), IIASA Collaborative Proceedings Series, Laxenburg, 125 (1982). Zbl0511.26009MR704977
  39. ZAJAÍČEK, L., On the points of multiplicity of monotone operators, Comment. Math. Univ. Carolin., 19 (1978), 179-189. Zbl0404.47025MR493541
  40. ZAJAÍČEK, L., On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J., 29 (1979), 340-348. Zbl0429.46007MR536060

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.