On lower semicontinuity in the calculus of variations

Giovanni Leoni

Bollettino dell'Unione Matematica Italiana (2001)

  • Volume: 4-B, Issue: 2, page 345-364
  • ISSN: 0392-4041

How to cite


Leoni, Giovanni. "On lower semicontinuity in the calculus of variations." Bollettino dell'Unione Matematica Italiana 4-B.2 (2001): 345-364. <http://eudml.org/doc/195382>.

author = {Leoni, Giovanni},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {lower semicontinuity; coercivity; blow-up method},
language = {eng},
month = {6},
number = {2},
pages = {345-364},
publisher = {Unione Matematica Italiana},
title = {On lower semicontinuity in the calculus of variations},
url = {http://eudml.org/doc/195382},
volume = {4-B},
year = {2001},

AU - Leoni, Giovanni
TI - On lower semicontinuity in the calculus of variations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2001/6//
PB - Unione Matematica Italiana
VL - 4-B
IS - 2
SP - 345
EP - 364
LA - eng
KW - lower semicontinuity; coercivity; blow-up method
UR - http://eudml.org/doc/195382
ER -


  1. ACERBI, E.- DAL MASO, G., New lower semicontinuity results for polyconvex integrals case, Cal. Var., 2 (1994), 329-372. Zbl0810.49014MR1385074
  2. ACERBI, E.- FUSCO, N., Semicontinuity problems in the calculus of variations, Arch. Rat. Mech. Anal., 86 (1984), 125-145. Zbl0565.49010MR751305
  3. AGMON, S.- DOUGLIS, A.- NIRENBERG, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math., 12 (1959), 623-727. Zbl0093.10401MR125307
  4. AMAR, M.- DE CICCO, V., Relaxation of quasi-convex integrals of arbitrary order, Proc. Roy. Soc. Edin., 124 (1994), 927-946. Zbl0831.49025MR1303762
  5. ALBERTI, G.- MANTEGAZZA, C., A note on the theory of SBV functions, Boll. Un. Mat. Ital. B, 11 (1997), 375-382. Zbl0877.49001MR1459286
  6. AMBROSIO, L., New lower semicontinuity results for integral functionals, Rend. Accad. Naz. Sci. XL, 11 (1987), 1-42. Zbl0642.49007MR930856
  7. AMBROSIO, L., A compactness theorem for a special class of functions of bounded variation, Boll. Un. Mat. Ital., 3B 7 (1989), 857-881. Zbl0767.49001MR1032614
  8. AMBROSIO, L., Existence theory for a new class, Arch. Rat. Mech. Anal., 111 (1990), 291-322. Zbl0711.49064MR1068374
  9. AMBROSIO, L., On the lower semicontinuity of quasi-convex integrals in SBV, Nonlinear Anal., 23 (1994), 405-425. Zbl0817.49017MR1291580
  10. AMBROSIO, L.- DAL MASO, G., On the relaxation in B V Ω ; R m of quasi-convex integrals, J. Funct. Anal., 109 (1992), 76-97. Zbl0769.49009
  11. AMBROSIO, L.- FUSCO, N.- PALLARA, D., Functions of Bounded Variation and Free Discontinuity Problems, Mathematical Monographs, Oxford University Press, 2000. Zbl0957.49001MR1857292
  12. AMBROSIO, L.- MORTOLA, S.- TORTORELLI, V. M., Functional with linear growth defined on vector-valued BV functions, J. Math. Pures et Appl., 70 (1991), 269-332. Zbl0662.49007MR1113814
  13. BALL, J., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., 63 (1977), 337-403. Zbl0368.73040MR475169
  14. BALL, J.- CURRIE, J.- OLVER, P., Null lagrangians, weak continuity, and variational problems of arbitrary order, J. Funct. Anal., 41 (1981), 315-328. Zbl0459.35020MR615159
  15. BALL, J. M.- MURAT, F., Remarks on Chacon's biting lemma, Proc. AMS, 107 (1989), 655-663. Zbl0678.46023MR984807
  16. BOCCARDO, L.- GIACHETTI, D.- DIAZ, J. I.- MURAT, F., Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms, J. Diff. Eq., 106 (1993), 215-237. Zbl0803.35046MR1251852
  17. BOUCHITTÉ, G., FONSECA, I. - MALÝ, J., Relaxation of multiple integrals below the growth exponent, Proc. Royal Soc. Edin., 128A (1998), 463-479. Zbl0907.49008MR1632814
  18. BOUCHITTÉ, G.- FONSECA, I.- MASCARENHAS, L., A global method for relaxation, Arch. Rat. Mech. Anal., 145 (1998), 51-98. Zbl0921.49004MR1656477
  19. BRAIDES, A., Approximation of free-discontinuity problems, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1998. Zbl0909.49001MR1651773
  20. BRAIDES, A.- DEFRANCESCHI, A., Homogenization of multiple integrals, Oxford Lecture Series in Mathematics and its Applications, 12, The Clarendon Press, Oxford University Press, New York, 1998. Zbl0911.49010MR1684713
  21. BRAIDES, A.- FONSECA, I.- LEONI, G., A-quasiconvexity: relaxation and homogenization, to appear in COCV. Zbl0971.35010
  22. CARBONE L., M.- DE ARCANGELIS, R., Further results on Γ -convergence and lower semicontinuity of integral functionals depending on vector-valued functions, Richerche Mat., 39 (1990), 99-129. Zbl0735.49008MR1101308
  23. CARRIERO, M.- LEACI, A.- TOMARELLI, F., Special bounded hessian and elastic-plastic plate, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 16 (1992), 223-258. Zbl0829.49014MR1205753
  24. CARRIERO, M.- LEACI, A.- TOMARELLI, F., Strong minimizers of Blake & Zisserman functional, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), 257-285. Zbl1015.49010
  25. CARRIERO, M.- LEACI, A.- TOMARELLI, F., A second order model in image segmentation: Blake & Zisserman functional, Progr. Nonlinear Differential Equations Appl., 25, Birkhäuser, 25 (1996), 57-72. Zbl0915.49004
  26. CELADA, P.- DAL MASO, G., Further remarks on the lower semicontinuity of polyconvex integrals, Ann. Inst. Henri Poincaré, Ann. Non Lin., 11 (1994), 661-691. Zbl0833.49013MR1310627
  27. ČERNÝ, R.- MALÝ, J., Counterexample to lower semicontinuity in Calculus of Variations, to appear in Math. Z. Zbl1024.49014MR1872570
  28. CHOKSI, R.- FONSECA, I., Bulk and interfacial energy densities for structured deformations of continua, Arch. Rat. Mech. Anal., 138 (1997), 37-103. Zbl0891.73078MR1463803
  29. DACOROGNA, B., Quasiconvexity and relaxation of nonconvex problems in the calculus of variations, J. Funct. Anal., 46 (1982), 102-118. Zbl0547.49003MR654467
  30. DACOROGNA, B., Direct methods in the calculus of variations, Springer-Verlag, New York, 1989. Zbl0703.49001MR990890
  31. DACOROGNA, B.- MARCELLINI, P., Semicontinuité pour des intégrandes polyconvexes sans continuité des determinants, C. R. Acad. Sci. Paris Sér. I Math., 311, 6 (1990), 393-396. Zbl0723.49007MR1071650
  32. DAL MASO, G., Integral representation on B V Ω of Γ -limits of variational integrals, Manuscripta Math., 30 (1980), 387-416. Zbl0435.49016MR567216
  33. DAL MASO, G.- SBORDONE, C., Weak lower semicontinuity of polyconvex integrals: a borderline case, Math. Z., 218 (1995), 603-609. Zbl0822.49010MR1326990
  34. DE CICCO, V., A lower semicontinuity result for functionals defined on B V Ω , Ricerche di Mat., 39 (1990), 293-325. Zbl0735.49010MR1114522
  35. DE CICCO, V., Lower semicontinuity for certain integral functionals on B V Ω , Boll. U.M.I., 5-B (1991), 291-313. Zbl0738.46012MR1111124
  36. DE GIORGI, E.- AMBROSIO, L., Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 82 (1988), 199-210. Zbl0715.49014MR1152641
  37. DE GIORGI, E.- BUTTAZZO, G.- DAL MASO, G., On the lower semicontinuity of certain integral functions, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend., 74 (1983), 274-282. Zbl0554.49006MR758347
  38. DE GIORGI, E.- CARRIERO, M.- LEACI, A., Existence theorem for a minimum problem with free discontinuity set, Arch. Rat. Mech. Anal., 108 (1989), 195-218. Zbl0682.49002MR1012174
  39. DEL PIERO, G.- OWEN, D. R., Structured deformations of continua, Arch. Rat. Mech. Anal., 124 (1993), 99-155. Zbl0795.73005MR1237908
  40. DEMENGEL, F., Fonctions á hessien borné, Ann. Inst. Fourier (Grenoble), 34 (1984), 155-190. Zbl0525.46020MR746501
  41. DEMENGEL, F., Compactness theorems for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity, Arch. Rat. Mech. Anal., 105 (1989), 123-161. Zbl0669.73030MR968458
  42. EISEN, G., A counterexample for some lower semicontinuity results, Math. Z., 162 (1978), 241-243. Zbl0369.49009MR508840
  43. EKELAND I., I.- TEMAM, R., Convex analysis and variational problems, North-Holland Publishing Company (1976). Zbl0322.90046MR463994
  44. EVANS, L. C.- GARIEPY, R. F., Lecture Notes on Measure Theory and Fine Properties of Functions, Studies in Advanced Math., CRC Press, 1992. Zbl0804.28001MR1158660
  45. FONSECA, I., The lower quasiconvex envelope of the stored energy function for an elastic crystal, J. Math. Pures et Appl., 67 (1988), 175-195. Zbl0718.73075MR949107
  46. FONSECA, I.- LEONI, G., On lower semicontinuity and relaxation, to appear in the Proc. Royal Soc. Edin. Zbl1003.49015MR1838501
  47. FONSECA, I.- LEONI, G., Some remarks on lower semicontinuity and relaxation, to appear in Indiana Univ. Math. J. Zbl0980.49018MR1793684
  48. FONSECA, I.- LEONI, G., MALÝ, J. - PARONI, R., A note on Meyers' Theorem in W k , 1 , to appear. Zbl1006.49006MR1911518
  49. FONSECA, I.- MALÝ, J., Relaxation of multiple integrals below the growth exponent, Ann. Inst. H. Poincaré, Analyse non Linéaire, 14 (1997), 308-338. Zbl0868.49011MR1450951
  50. FONSECA, I.- MALÝ, J., Weak convergence of minors, to appear. 
  51. FONSECA, I.- MARCELLINI, P., Relaxation of multiple integrals in subcritical Sobolev spaces, J. Geom. Anal., 7 (1997), 57-81. Zbl0915.49011MR1630777
  52. FONSECA, I.- MÜLLER, S., Quasi-convex integrands and lower semicontinuity in L 1 , SIAM J. Math. Anal., 23 (1992), 1081-1098. Zbl0764.49012MR1177778
  53. FONSECA, I.- MÜLLER, S., Relaxation of quasiconvex functionals in B V Ω , R p for integrands f x , u , u , Arch. Rat. Mech. Anal., 123 (1993), 1-49. Zbl0788.49039MR1218685
  54. FONSECA I., I.- MÜLLER, S., A-quasiconvexity, lower semicontinuity and Young measures, SIAM J. Math. Anal., 30 (1999), 1355-1390. Zbl0940.49014MR1718306
  55. FUSCO, N., Dualità e semicontinuità per integrali del tipo dell'area, Rend. Accad. Sci. Fis. Mat., IV. Ser., 46 (1979), 81-90. Zbl0445.49017
  56. FUSCO, N., Quasiconvessità e semicontinuità per integrali multipli di ordine superiore, Ricerche Mat., 29 (1980), 307-323. Zbl0508.49012
  57. FUSCO, N.- HUTCHINSON, J. E., A direct proof for lower semicontinuity of polyconvex functionals, Manuscripta Math., 85 (1995), 35-50. Zbl0874.49015MR1329439
  58. GANGBO, W., On the weak lower semicontinuity of energies with polyconvex integrands, J. Math. Pures et Appl., 73 (1994), 455-469. Zbl0829.49011MR1300984
  59. GUIDORZI, M.- POGGIOLINI, L., Lower semicontinuity for quasiconvex integrals of higher order, NoDEA, 6 (1999), 227-246. Zbl0930.35059MR1691445
  60. KRISTENSEN, J., Lower semicontinuity in spaces of weakly differentiable functions, Math. Ann., 313 (1999), 653-710. Zbl0924.49012MR1686943
  61. LARSEN, C., Quasiconvexification in W p and optimal jump microstructure in BV relaxation, SIAM J. Math. Anal., 29 (1998), 823-848. Zbl0915.49005MR1617734
  62. LIU, F. C., A Luzin type property of Sobolev functions, Indiana Univ. Math. J., 26 (1977), 645-651. Zbl0368.46036MR450488
  63. MALÝ, J., Weak lower semicontinuity of polyconvex integrals, Proc. Royal Soc. Edin., 123A (1993), 681-691. Zbl0813.49017MR1237608
  64. MALÝ, J., Lower semicontinuity of quasiconvex integrals, Manuscripta Math., 85 (1994), 419-428. Zbl0862.49017MR1305752
  65. MARCELLINI, P., Approximation of quasiconvex functions and lower semicontinuity of multiple integrals quasiconvex integrals, Manuscripta Math., 51 (1985), 1-28. Zbl0573.49010MR788671
  66. MARCELLINI, P., On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré, Analyse non Linéaire, 3 (1986), 391-409. Zbl0609.49009MR868523
  67. MARCELLINI, P. - SBORDONE, C., Semicontinuity problems in the calculus of variations, Nonlinear Analysis, 4 (1980), 241-257. Zbl0537.49002MR0563807
  68. MEYERS, N., Quasi-convexity - lower semi-continuity of multiple variational integrals of any order, Trans. Amer. Math. Soc., 119 (1965), 125-149. Zbl0166.38501MR0188838
  69. MORREY, C. B., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math., 2 (1952), 25-53. Zbl0046.10803MR0054865
  70. MORREY, C. B., Multiple integrals in the Calculus of Variations, Springer, Berlin, 1966. Zbl0142.38701MR0202511
  71. OWEN, D. R. - PARONI, R., Second-order structured deformations, accepted by Arch. Rat. Mech. Anal. Zbl0990.74004MR1808369
  72. SERRIN, J., On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc., 161 (1961), 139-167. Zbl0102.04601MR0138018
  73. STEIN, E. M., Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. Zbl0207.13501MR0290095
  74. STRUWE, M., Variational methods, Springer, Berlin, 2000. Zbl0939.49001MR1736116
  75. TEMAM, T., Problémes mathématiques en plasticité, Gauthier-Villars, Paris, 1983. Zbl0547.73026MR0711964
  76. TROMBETTI, C., On lower semicontinuity and relaxation properties of certain classes of variational integrals, Rend. Accad. Naz. Sci. XL., 21 (1997), 25-51. MR1612791
  77. ZIEMER, W. P., Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Springer-Verlag, New York, 1989. Zbl0692.46022MR1014685

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.