Strong minimizers of Blake & Zisserman functional

Michele Carriero; Antonio Leaci; Franco Tomarelli

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 25, Issue: 1-2, page 257-285
  • ISSN: 0391-173X

How to cite

top

Carriero, Michele, Leaci, Antonio, and Tomarelli, Franco. "Strong minimizers of Blake & Zisserman functional." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.1-2 (1997): 257-285. <http://eudml.org/doc/84288>.

@article{Carriero1997,
author = {Carriero, Michele, Leaci, Antonio, Tomarelli, Franco},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {integral functional; Mumford-Shah functional; lower-semicontinuity; energy functional; SBV; GSBV; Blake & Zisserman functional; blow-up equation; strong minimizers; free discontinuities; free gradient discontinuities; image segmentation},
language = {eng},
number = {1-2},
pages = {257-285},
publisher = {Scuola normale superiore},
title = {Strong minimizers of Blake & Zisserman functional},
url = {http://eudml.org/doc/84288},
volume = {25},
year = {1997},
}

TY - JOUR
AU - Carriero, Michele
AU - Leaci, Antonio
AU - Tomarelli, Franco
TI - Strong minimizers of Blake & Zisserman functional
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 1-2
SP - 257
EP - 285
LA - eng
KW - integral functional; Mumford-Shah functional; lower-semicontinuity; energy functional; SBV; GSBV; Blake & Zisserman functional; blow-up equation; strong minimizers; free discontinuities; free gradient discontinuities; image segmentation
UR - http://eudml.org/doc/84288
ER -

References

top
  1. [A1] L. Ambrosio, Compactness for a special case of functions of bounded variation, Boll. Un. Mat. Ital. B3 (1989), 857-881. Zbl0767.49001MR1032614
  2. [A2] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Rational Mech. Anal.111 (1990), 291-322. Zbl0711.49064MR1068374
  3. [AFP] L. Ambrosio - N. Fusco - D. Pallara, Partial regularity of free discontinuity sets II, Ann. Sc. Norm. Sup. Pisa, to appear. Zbl0896.49024MR1475772
  4. [AV] L. Ambrosio - E. Virga, A boundary value problem for nematic liquid crystals with variable degree of orientation, Arch. Rational Mech. Anal.114 (1991), 335-347. Zbl0736.49031MR1100799
  5. [BZ] A. Blake - A. Zisserman, Visual Reconstruction, The MIT Press, Cambridge, 1987. MR919733
  6. [B] H. Brezis, Analisi funzionale, teoria e applicazioni, Liguori, Napoli, 1992. 
  7. [C] M. Carriero, Variational models in image segmentation: first and second order energy approaches, Preprint del Dip. Matem. Univ. Lecce6 (1995). 
  8. [CL] M. Carriero - A. Leaci, Sk valued maps minimizing the Lp norm of the gradient with free discontinuities, Ann. Sc. Norm. Sup. Pisa18 (1991), 321-352. Zbl0753.49018MR1145314
  9. [CLT1] M. Carriero - A. Leaci - F. Tomarelli, Plastic free discontinuities and special bounded hessian, C. R. Acad. Sci. Paris314 (1992), 595-600. Zbl0794.49011MR1158743
  10. [CLT2] M. Carriero - A. Leaci - F. Tomarelli, Special Bounded Hessian and elastic-plastic plate, Rend. Accad. Naz. delle Scienze (dei XL) (109) XV (1992), 223-258. Zbl0829.49014MR1205753
  11. [CLT3] M. Carriero - A. Leaci - F. Tomarelli, Strong solution for an Elastic Plastic Plate, Calc. Var.2 (1994), 219-240. Zbl0806.49006MR1385527
  12. [CLT4] M. Carriero - A. Leaci - F. Tomarelli, Free gradient discontinuities, in "Calculus of Variations, Homogeneization and Continuum Mechanics", Buttazzo, Bouchitté, Suquet eds., World Scientific, Singapore, 1994, 131-147. Zbl0884.49001MR1428696
  13. [CLT5] M. Carriero - A. Leaci - F. Tomarelli, A second order model in image segmentation : Blake & Zisserman functional, in "Variational Methods for Discontinuous Structures", R. Serapioni, F. Tomarelli eds., Birkäuser, 1996, 57-72. Zbl0915.49004MR1414488
  14. [Co] A. Coscia:, Existence result for a new variational problem in one dimensional segmentation theory, Ann. Univ. Ferrara, XXXVII (1991), 185-203. Zbl0778.49013MR1207001
  15. [DMS] G. Dal Maso - J.M. Morel - S. Solimini, A variational method in image segmentation : existence and approximation results, Acta Math.168 (1992), 89-151. Zbl0772.49006MR1149865
  16. [DS] G. David - S. Semmes, On the singular set of minimizers of the Mumford-Shahfunctional, J. Math. Pures Appl.75 (1996), 299-342. Zbl0853.49010MR1411155
  17. [DG] E. De Giorgi, Free discontinuity problems in calculus of variations, Frontiers in Pure & Applied Mathematics, R. Dautray Ed., North-Holland, Amsterdam, 1991, 55-61. Zbl0758.49002MR1110593
  18. [DA] E. De Giorgi - L. Ambrosio, Un nuovo tipo di funzionale del Calcolo delle Variazioni, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur.82 (1988), 199-210. Zbl0715.49014MR1152641
  19. [DCL] E. De Giorgi - M. Carriero - A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal.108 (1989), 195-218. Zbl0682.49002MR1012174
  20. [F] H. Federer, Geometric Measure Theory, Springer, Berlin, 1969. Zbl0176.00801MR257325
  21. [Fo] I Fonseca, Interfacial energy and the Maxwell rule, Arch. Rat. Mech. Anal.106 (1989), 63-95. Zbl0721.73005MR982103
  22. [G] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. Math. Stud., Princeton U. P., 1983. Zbl0516.49003MR717034
  23. [L] A. Leaci, Free discontinuity problems with unbounded data, Math. Models and Meth. in Applied Sciences4 (1994), 843-855. Zbl0829.49030MR1305560
  24. [LS] A. Leaci - S. Solimini, Variational problems with a free discontinuity set, in "Geometry Driven Diffusion in Computer Visio", B. ter Haar Romeny Ed., Kluwer, 1994, 147-154. 
  25. [MS] J.M. Morel - S. Solimini, Variational Models in Image Segmentation, Birkhäuser, Basel, 1994. 
  26. [MSh] D. Mumford - J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math.XLII (1989), 577-685. Zbl0691.49036MR997568
  27. [T1] F. Tomarelli, Special Bounded Hessian and partial regularity of equilibrium for a plastic plate, in "Developments in PDE and Applications to Mathematical Physics", G. Buttazzo, G. P. Galdi, L. Zanghirati eds., Plenum Press, N. Y., 1992, 235-240. Zbl0900.35412MR1213936
  28. [T2] F. Tomarelli, Mathematical models for image segmentation in computer vision, Advanced Mathematical Methods in Electric and Electronic Measurements, IEEE North Italy Section, 1994. 
  29. [Z] W.P. Ziemer, Weakly Differentiable Functions, Springer, N.Y., 1988. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.