On the variety of linear series on a singular curve
Bollettino dell'Unione Matematica Italiana (2002)
- Volume: 5-B, Issue: 3, page 631-639
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBallico, E., and Fontanari, C.. "On the variety of linear series on a singular curve." Bollettino dell'Unione Matematica Italiana 5-B.3 (2002): 631-639. <http://eudml.org/doc/195416>.
@article{Ballico2002,
abstract = {Let $Y$ be an integral projective curve with $g := p_\{a\}(Y) \geq 2$. For all positive integers $d$, $r$ let $W^\{r\}_\{d\}(Y)(\text\{\}^\{**\})$ be the set of all $L \in \text\{Pic\}^\{d\}(Y)$ with $h^\{0\}(Y, L) \geq r+1$ and $L$ spanned. Here we prove that if $d \leq g-2$, then $\dim (W^\{r\}_\{d\}(Y) (\text\{\}^\{**\})) \leq d-3r$ except in a few cases (essentially if $Y$ is a double covering).},
author = {Ballico, E., Fontanari, C.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {631-639},
publisher = {Unione Matematica Italiana},
title = {On the variety of linear series on a singular curve},
url = {http://eudml.org/doc/195416},
volume = {5-B},
year = {2002},
}
TY - JOUR
AU - Ballico, E.
AU - Fontanari, C.
TI - On the variety of linear series on a singular curve
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/10//
PB - Unione Matematica Italiana
VL - 5-B
IS - 3
SP - 631
EP - 639
AB - Let $Y$ be an integral projective curve with $g := p_{a}(Y) \geq 2$. For all positive integers $d$, $r$ let $W^{r}_{d}(Y)(\text{}^{**})$ be the set of all $L \in \text{Pic}^{d}(Y)$ with $h^{0}(Y, L) \geq r+1$ and $L$ spanned. Here we prove that if $d \leq g-2$, then $\dim (W^{r}_{d}(Y) (\text{}^{**})) \leq d-3r$ except in a few cases (essentially if $Y$ is a double covering).
LA - eng
UR - http://eudml.org/doc/195416
ER -
References
top- ARBARELLO, E.- CORNALBA, M., Su una congettura di Petri, Comment. Math. Helvetici, 56 (1981), 1-38. Zbl0505.14002MR615613
- ARBARELLO, E.- CORNALBA, M.- GRIFFITHS, P.- HARRIS, J., Geometry of Algebraic Curves, I, Springer, 1985. Zbl0559.14017MR770932
- COPPENS, M.- KEEM, C.- MARTENS, G., Primitive linear series on curves, Manuscripta Math., 77 (1992), 237-264. Zbl0786.14016MR1188583
- DAVIS, E. D., On the geometric interpretation of seminormality, Proc. Amer. Math. Soc., 68 (1978), 1-5. Zbl0386.13012MR453748
- EISENBUD, D.- KOH, J.- STILLMAN, M., Determinantal equations for curves of high degree, Amer. J. Math., 110 (1988), 513-539. Zbl0681.14027MR944326
- HOMMA, M., Singular hyperelliptic curves, Manuscripta Math., 98 (1999), 21-36. Zbl0940.14019MR1669611
- HOMMA, M., Separable gonality of a Gorenstein curve, Mathematica Contemporânea (to appear). Zbl0921.14014MR1663640
- KATO, T.- KEEM, C., G. Martens' dimension theorem for curves of odd gonality, Geom. Dedicata, 78 (1999), 301-313. Zbl0958.14019MR1725371
- MARTENS, H., On the variety of special divisors on a curve, J. reine angew. Math., 227 (1967), 111-120. Zbl0172.46301MR215847
- TAMME, G., Teilkörper höheren Gesclechts eines algebraischen Funktionenkörpers, Arch. Math. (Basel), 23 (1972), 257-259. Zbl0242.14006MR311666
- TRAVERSO, C., Seminormality and Picard groups, Ann. Sc. Norm. Sup., 25 (1970), 287-304. Zbl0205.50501MR277542
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.