On the variety of linear series on a singular curve

E. Ballico; C. Fontanari

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 3, page 631-639
  • ISSN: 0392-4041

Abstract

top
Let Y be an integral projective curve with g := p a Y 2 . For all positive integers d , r let W d r Y * A * be the set of all L Pic d Y with h 0 Y , L r + 1 and L spanned. Here we prove that if d g - 2 , then dim W d r Y * A * d - 3 r except in a few cases (essentially if Y is a double covering).

How to cite

top

Ballico, E., and Fontanari, C.. "On the variety of linear series on a singular curve." Bollettino dell'Unione Matematica Italiana 5-B.3 (2002): 631-639. <http://eudml.org/doc/195416>.

@article{Ballico2002,
abstract = {Let $Y$ be an integral projective curve with $g := p_\{a\}(Y) \geq 2$. For all positive integers $d$, $r$ let $W^\{r\}_\{d\}(Y)(\text\{\}^\{**\})$ be the set of all $L \in \text\{Pic\}^\{d\}(Y)$ with $h^\{0\}(Y, L) \geq r+1$ and $L$ spanned. Here we prove that if $d \leq g-2$, then $\dim (W^\{r\}_\{d\}(Y) (\text\{\}^\{**\})) \leq d-3r$ except in a few cases (essentially if $Y$ is a double covering).},
author = {Ballico, E., Fontanari, C.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {631-639},
publisher = {Unione Matematica Italiana},
title = {On the variety of linear series on a singular curve},
url = {http://eudml.org/doc/195416},
volume = {5-B},
year = {2002},
}

TY - JOUR
AU - Ballico, E.
AU - Fontanari, C.
TI - On the variety of linear series on a singular curve
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/10//
PB - Unione Matematica Italiana
VL - 5-B
IS - 3
SP - 631
EP - 639
AB - Let $Y$ be an integral projective curve with $g := p_{a}(Y) \geq 2$. For all positive integers $d$, $r$ let $W^{r}_{d}(Y)(\text{}^{**})$ be the set of all $L \in \text{Pic}^{d}(Y)$ with $h^{0}(Y, L) \geq r+1$ and $L$ spanned. Here we prove that if $d \leq g-2$, then $\dim (W^{r}_{d}(Y) (\text{}^{**})) \leq d-3r$ except in a few cases (essentially if $Y$ is a double covering).
LA - eng
UR - http://eudml.org/doc/195416
ER -

References

top
  1. ARBARELLO, E.- CORNALBA, M., Su una congettura di Petri, Comment. Math. Helvetici, 56 (1981), 1-38. Zbl0505.14002MR615613
  2. ARBARELLO, E.- CORNALBA, M.- GRIFFITHS, P.- HARRIS, J., Geometry of Algebraic Curves, I, Springer, 1985. Zbl0559.14017MR770932
  3. COPPENS, M.- KEEM, C.- MARTENS, G., Primitive linear series on curves, Manuscripta Math., 77 (1992), 237-264. Zbl0786.14016MR1188583
  4. DAVIS, E. D., On the geometric interpretation of seminormality, Proc. Amer. Math. Soc., 68 (1978), 1-5. Zbl0386.13012MR453748
  5. EISENBUD, D.- KOH, J.- STILLMAN, M., Determinantal equations for curves of high degree, Amer. J. Math., 110 (1988), 513-539. Zbl0681.14027MR944326
  6. HOMMA, M., Singular hyperelliptic curves, Manuscripta Math., 98 (1999), 21-36. Zbl0940.14019MR1669611
  7. HOMMA, M., Separable gonality of a Gorenstein curve, Mathematica Contemporânea (to appear). Zbl0921.14014MR1663640
  8. KATO, T.- KEEM, C., G. Martens' dimension theorem for curves of odd gonality, Geom. Dedicata, 78 (1999), 301-313. Zbl0958.14019MR1725371
  9. MARTENS, H., On the variety of special divisors on a curve, J. reine angew. Math., 227 (1967), 111-120. Zbl0172.46301MR215847
  10. TAMME, G., Teilkörper höheren Gesclechts eines algebraischen Funktionenkörpers, Arch. Math. (Basel), 23 (1972), 257-259. Zbl0242.14006MR311666
  11. TRAVERSO, C., Seminormality and Picard groups, Ann. Sc. Norm. Sup., 25 (1970), 287-304. Zbl0205.50501MR277542

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.