Prime numbers contain arbitrarily long arithmetical progressions
Pokroky matematiky, fyziky a astronomie (2004)
- Volume: 49, Issue: 3, page 177-188
- ISSN: 0032-2423
Access Full Article
topHow to cite
topKlazar, Martin. "Prvočísla obsahují libovolně dlouhé aritmetické posloupnosti." Pokroky matematiky, fyziky a astronomie 49.3 (2004): 177-188. <http://eudml.org/doc/196625>.
@article{Klazar2004,
author = {Klazar, Martin},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {prime number; arithmetic progression; prime number; arithmetic progression},
language = {cze},
number = {3},
pages = {177-188},
publisher = {Jednota českých matematiků a fyziků},
title = {Prvočísla obsahují libovolně dlouhé aritmetické posloupnosti},
url = {http://eudml.org/doc/196625},
volume = {49},
year = {2004},
}
TY - JOUR
AU - Klazar, Martin
TI - Prvočísla obsahují libovolně dlouhé aritmetické posloupnosti
JO - Pokroky matematiky, fyziky a astronomie
PY - 2004
PB - Jednota českých matematiků a fyziků
VL - 49
IS - 3
SP - 177
EP - 188
LA - cze
KW - prime number; arithmetic progression; prime number; arithmetic progression
UR - http://eudml.org/doc/196625
ER -
References
top- Agrawal, M., Kayal, N., Saxena, N., PRIMES is in P, http://www.cse.iitk.ac.in/news/primality.html Zbl1071.11070
- Bečvářová, M., Eukleidovy Základy. Jejich vydání a překlady, Prometheus, Praha 2002. (2002) Zbl1024.01030MR1929927
- Brun, V., Le crible d’Eratosthène et le théorème de Goldbach, C. R. Acad. Sci. Paris 168 (1919), 544–546. (1919)
- Crandall, R., Pomerance, C., Prime Numbers. A Computational Perspective, Springer-Verlag, New York 2001. (2001) Zbl1088.11001MR1821158
- Davis, M., 10.2307/2318447, Amer. Math. Monthly 80 (1973), 233–269. (1973) Zbl0277.02008MR0317916DOI10.2307/2318447
- Dirichlet, P. G. L., Beweis des Satzes, daß jede unbegrenzte aritmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält, Abh. Akad. Berlin (1837), 45–71. (1837)
- Edwards, H. M., Riemann’s zeta function, Academic Press, New York-London 1974. (1974) Zbl0315.10035MR0466039
- Edwards, H. M., Fermat’s last theorem. A genetic introduction to algebraic number theory, Springer-Verlag, New York 1977. (1977) Zbl0355.12001MR0616635
- Erdős, P., 10.1073/pnas.35.7.374, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 374–384. (1949) Zbl0034.31403MR0029411DOI10.1073/pnas.35.7.374
- Friedlander, J., Iwaniec, H., The polynomial captures its primes, Ann. of Math. (2) 148 (1998), 945–1040. (1998) Zbl0926.11068MR1670065
- Friedlander, J., Iwaniec, H., Asymptotic sieve for primes, Ann. of Math. (2) 148 (1998), 1041–1065. (1998) Zbl0926.11067MR1670069
- Furstenberg, H., Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. (1977) Zbl0347.28016MR0498471
- Furstenberg, H., Katznelson, Y., Ornstein, D., 10.1090/S0273-0979-1982-15052-2, Bull. Amer. Math. Soc. (N. S.) 7 (1982), 527–552. (1982) Zbl0523.28017MR0670131DOI10.1090/S0273-0979-1982-15052-2
- Goldstein, L. J., 10.2307/2319162, Amer. Math. Monthly 80 (1973), 599–615. (1973) Zbl0272.10001MR0313171DOI10.2307/2319162
- Goldston, D., Yildirim, C. Y., Higher correlations of divisor sums related to primes, I: Triple correlations, Integers 3 (2003), 66 s. (2003) Zbl1118.11039MR1985667
- Goldston, D., Yildirim, C. Y., Higher correlations of divisor sums related to primes, III: -correlations, arXiv:math.NT/0209102, 32 s. Zbl1134.11034
- Goldston, D., Yildirim, C. Y., Small gaps between primes, Preprint.
- Gowers, W. T., 10.1007/s00039-001-0332-9, Geom. Funct. Anal. 11 (2001), 465–588. (2001) Zbl1028.11005MR1844079DOI10.1007/s00039-001-0332-9
- Gowers, T., Vinogradov’s Three-Primes Theorem, 17 s. http://www.dpmms.cam.ac.uk/~wtg10/
- Greaves, G., Sieves in number theory, Springer-Verlag, Berlin 2001. (2001) Zbl1003.11044MR1836967
- Green, B., Tao, T., The primes contain arbitrarily long arithmetic progressions, arXiv:math.NT/0404188 (verze 1 z 8. dubna 2004), 49 s. (2004) Zbl1191.11025MR2415379
- Heath-Brown, D. R., 10.1007/BF02392715, Acta Math. 186 (2001), 1–84. (2001) Zbl1007.11055MR1828372DOI10.1007/BF02392715
- Chen, J., On the representation of a large even integer as the sum of a prime and the product of at most two primes, Kexue Tongbao 17 (1966), 385–386. (1966) MR0207668
- Chen, J., On the representation of a large even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157–176. (1973) MR0434997
- Křížek, M., Od Fermatových prvočísel ke geometrii, In: Šolcová, A., Křížek, M., Mink, G., editoři, Matematik Pierre de Fermat. Cahiers du CEFRES č. 28, 131–161. CEFRES, Praha 2002. (2002)
- Křížek, M., Luca, F., Somer, L., 17 lectures on Fermat numbers. From number theory to geometry, Springer-Verlag, New York 2001. (2001) Zbl1010.11002MR1866957
- Kučera, L., Kombinatorické algoritmy, SNTL, Praha 1983. (1983)
- Levinson, N., 10.2307/2316361, Amer. Math. Monthly 76 (1969), 225–245. (1969) Zbl0172.06001MR0241372DOI10.2307/2316361
- Matijasevič, Ju. V., Diofantovosť perečislimych množestv, Dokl. Akad. Nauk SSSR 191 (1970), 279–282. (1970)
- Matijasevič, Ju. V., Diofantovo predstavlenie množestva prostych čisel, Dokl. Akad. Nauk SSSR 196 (1971), 770–773. (1971)
- Matijasevič, Ju. V., Hilbert’s tenth problem, MIT Press, Cambridge, MA 1993. (1993)
- Nathanson, M. B., Additive Number Theory. The Classical Bases, Springer-Verlag, New York 1996. (1996) Zbl0859.11002MR1395371
- Nathanson, M. B., Elementary Methods in Number Theory, Springer-Verlag, New York 2000. (2000) Zbl0953.11002MR1732941
- Novák, B., O elementárním důkazu prvočíselné věty, Časopis pro pěstování matematiky 100 (1975), 71–84. (1975)
- Papadimitriou, Ch. H., Computational Complexity, Addison-Wesley, Reading, MA 1994. (1994) Zbl0833.68049MR1251285
- Porubský, Š., Fermat a teorie čísel, In: Šolcová, A., Křížek, M., Mink, G., editoři, Matematik Pierre de Fermat. Cahiers du CEFRES č. 28, 49–86. CEFRES, Praha 2002. (2002)
- Pratt, V. R., 10.1137/0204018, SIAM J. Comput. 4 (1975), 214–220. (1975) Zbl0316.68031MR0391574DOI10.1137/0204018
- Rabin, M. O., Probabilistic Algorithms., In: J. F. Traub, editor, Algorithms and Complexity, 21–39. Academic Press, New York 1976. (1976) Zbl0384.60001MR0464678
- Riemann, B., Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie (1859), 671–680. (1859)
- Rivest, R., Shamir, A., Adleman, L., 10.1145/359340.359342, Comm. ACM 21 1978, 120–126. (1978) Zbl0368.94005MR0700103DOI10.1145/359340.359342
- Selberg, A., 10.2307/1969455, Ann. of Math. (2) 50 (1949), 305–313. (1949) Zbl0036.30604MR0029410DOI10.2307/1969455
- Serre, J.-P., A Course in Arithmetics, Springer-Verlag, New York 1973. (1973) MR0344216
- Shor, P., Algorithms for quantum computation: discrete logarithms and factoring, In: 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM, 1994), 124–134. IEEE Comput. Soc. Press, Los Alamitos, CA 1994. (1994) Zbl1005.11506MR1489242
- Schnirelmann, L., 10.1007/BF01448914, Mat. Ann. 107 (1933), 649–690. (1933) Zbl0006.10402MR1512821DOI10.1007/BF01448914
- Stillwell, J., Elements of algebra. Geometry, numbers, equations, Springer-Verlag, New York 1994. (1994) Zbl0832.00001MR1311026
- Szemerédi, E., On sets of integers containing no elements in arithmetic progression, Acta Arith. 27 (1975), 199–245. (1975) Zbl0335.10054MR0369312
- Šnireľman, L. G., Ob additivnych svojstvach čisel, Izvestija donskogo politechničeskogo instituta v Novočerkasske 14 (1930), 3–28. (1930)
- Tao, T., A quantitative ergodic theory proof of Szemerédi’s theorem, arXiv:math.CO/0405251, 51 s. Zbl1127.11011
- Tao, T., A quantitative ergodic theory proof of Szemerédi’s theorem (abridged), 20 s. http://www.math.ucla.edu/~tao/preprints/ Zbl1127.11011
- Tao, T., A bound for progressions of length in the primes, 4 s. http://www.math.ucla.edu/~tao/preprints/
- Tao, T., A remark on Goldston-Yildirim correlation estimates, 8 s. http://www.math.ucla.edu/~tao/preprints/
- Tenenbaum, G., Introduction to analytic and probabilistic number theory, Cambridge University Press, Cambridge, U. K. 1995. (1995) Zbl0880.11001MR1342300
- Vinogradov, I. M., Predstavlenie něčotnogo čisla summoj trjoch prostych čisel, Dokl. Akad. Nauk SSSR 15 (1937), 291–294. (1937)
- Zagier, D., 10.2307/2975232, Amer. Math. Monthly 104 (1997), 705–708. (1997) Zbl0887.11039MR1476753DOI10.2307/2975232
- [unknown], http://www.arxiv.org/
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.