Div-curl lemma revisited: Applications in electromagnetism

Marián Slodička; Ján Jr. Buša

Kybernetika (2010)

  • Volume: 46, Issue: 2, page 328-340
  • ISSN: 0023-5954

Abstract

top
Two new time-dependent versions of div-curl results in a bounded domain Ω 3 are presented. We study a limit of the product v k w k , where the sequences v k and w k belong to Ł 2 ( Ω ) . In Theorem 2.1 we assume that × v k is bounded in the L p -norm and · w k is controlled in the L r -norm. In Theorem 2.2 we suppose that × w k is bounded in the L p -norm and · w k is controlled in the L r -norm. The time derivative of w k is bounded in both cases in the norm of - 1 ( Ω ) . The convergence (in the sense of distributions) of v k w k to the product v w of weak limits of v k and w k is shown.

How to cite

top

Slodička, Marián, and Buša, Ján Jr.. "Div-curl lemma revisited: Applications in electromagnetism." Kybernetika 46.2 (2010): 328-340. <http://eudml.org/doc/196724>.

@article{Slodička2010,
abstract = {Two new time-dependent versions of div-curl results in a bounded domain $\Omega \subset \mathbb \{R\}^3$ are presented. We study a limit of the product $\{v\}_k\{w\}_k$, where the sequences $\{v\}_k$ and $\{w\}_k$ belong to $Ł_\{2\}(\Omega )$. In Theorem 2.1 we assume that $\nabla \times \{v\}_k$ is bounded in the $L_p$-norm and $\nabla \cdot \{w\}_k$ is controlled in the $L_r$-norm. In Theorem 2.2 we suppose that $\nabla \times \{w\}_k$ is bounded in the $L_p$-norm and $\nabla \cdot \{w\}_k$ is controlled in the $L_r$-norm. The time derivative of $\{w\}_k$ is bounded in both cases in the norm of $\{-1\}(\Omega )$. The convergence (in the sense of distributions) of $\{v\}_k\{w\}_k$ to the product $\{v\}\{w\}$ of weak limits of $\{v\}_k$ and $\{w\}_k$ is shown.},
author = {Slodička, Marián, Buša, Ján Jr.},
journal = {Kybernetika},
keywords = {compensated compactness; convergence; vector fields; convergence; compensated compactness; vector fields},
language = {eng},
number = {2},
pages = {328-340},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Div-curl lemma revisited: Applications in electromagnetism},
url = {http://eudml.org/doc/196724},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Slodička, Marián
AU - Buša, Ján Jr.
TI - Div-curl lemma revisited: Applications in electromagnetism
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 2
SP - 328
EP - 340
AB - Two new time-dependent versions of div-curl results in a bounded domain $\Omega \subset \mathbb {R}^3$ are presented. We study a limit of the product ${v}_k{w}_k$, where the sequences ${v}_k$ and ${w}_k$ belong to $Ł_{2}(\Omega )$. In Theorem 2.1 we assume that $\nabla \times {v}_k$ is bounded in the $L_p$-norm and $\nabla \cdot {w}_k$ is controlled in the $L_r$-norm. In Theorem 2.2 we suppose that $\nabla \times {w}_k$ is bounded in the $L_p$-norm and $\nabla \cdot {w}_k$ is controlled in the $L_r$-norm. The time derivative of ${w}_k$ is bounded in both cases in the norm of ${-1}(\Omega )$. The convergence (in the sense of distributions) of ${v}_k{w}_k$ to the product ${v}{w}$ of weak limits of ${v}_k$ and ${w}_k$ is shown.
LA - eng
KW - compensated compactness; convergence; vector fields; convergence; compensated compactness; vector fields
UR - http://eudml.org/doc/196724
ER -

References

top
  1. Amrouche, C., Bernardi, C., Dauge, M., Girault, V., 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B, Math. Methods Appl. Sci. 21 (1998), 823–864. MR1626990DOI10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
  2. Anderson, P. W., Kim, Y. B., 10.1103/RevModPhys.36.39, Rev. Mod. Phys. 36 (1964), 39–43. DOI10.1103/RevModPhys.36.39
  3. Bean, C. P., 10.1103/RevModPhys.36.31, Rev. Mod. Phys. 36 (1964), 31–39. DOI10.1103/RevModPhys.36.31
  4. Beasley, M. R., Labusch, R., Webb, W. W, 10.1103/PhysRev.181.682, Phys. Rev. 181 (1969), 682–700. DOI10.1103/PhysRev.181.682
  5. Bossavit, A., Computational Electromagnetism, Variational Formulations, Complementarity, Edge Elements. (Electromagnetism, Vol. XVIII.) Academic Press, Orlando 1998. Zbl0945.78001MR1488417
  6. Cessenat, M., Mathematical methods in electromagnetism, Linear theory and applications. (Series on Advances in Mathematics for Applied Sciences, Vol. 41.) World Scientific Publishers, Singapore 1996. Zbl0917.65099MR1409140
  7. Chapman, S. J., 10.1137/S0036144599371913, SIAM Rev. 42 (2000), 4, 555–598. Zbl0967.82014MR1814048DOI10.1137/S0036144599371913
  8. Costabel, M., 10.1002/mma.1670120406, Math. Methods Appl. Sci. 12 (1990), 365–368. MR1048563DOI10.1002/mma.1670120406
  9. Evans, L. C., Partial Differential Equations, (Graduate Studies in Mathematics, Vol. 19.) American Mathematical Society, Providence, RI 1998. MR1625845
  10. Evans, L. C., Weak Convergence Methods for Nonlinear Partial Differential Equations, (Conference Board of the Mathematical Sciences, Vol. 74. Regional Conference Series in Mathematics.) American Mathematical Society, Providence 1990. Zbl0698.35004MR1034481
  11. Fabrizio, M., Morro, A., Electromagnetism of Continuous Media, (Mathematical Modelling and Applications.) Oxford University Press, Oxford 2003. Zbl1027.78001MR1996323
  12. Gasser, I., Marcati, P., On a generalization of the div-curl lemma, Osaka J. Math. 45 (2008), 211–214. Zbl1139.35379MR2416657
  13. Gilbarg, D., Trudinger, N. S., 10.1007/978-3-642-96379-7, (Grundlehren der Mathematischen Wissenschaften, Vol. 224.) Springer, Berlin 1977. Zbl1042.35002MR0473443DOI10.1007/978-3-642-96379-7
  14. Jost, J., Partial Differential Equations, (Graduate Texts in Mathematics Vol. 214 .) Springer, New York xxxx. Zbl1121.35001MR1919991
  15. Kozono, H., Yanagisawa, T., 10.1016/j.jfa.2009.01.010, J. Funct. Anal. 256 (2009), 11, 3847–3859. MR2514064DOI10.1016/j.jfa.2009.01.010
  16. Kufner, A., John, O., Fučík, S., Function Spaces, (Monograpfs and Textbooks on Mechanics of Solids and Fluids.) Noordhoff International Publishing, Leyden 1977. MR0482102
  17. London, F., Superfluids, Vol. I.: Macroscopic Theory of Superconductivity. New York: John Wiley & Sons, Inc. London: Chapman & Hall, Ltd., New York 1950. Zbl0058.23405
  18. London, F., Superfluids, Vol. II. Macroscopic Theory of Superfluid Helium. John Wiley & Sons, Inc., New York 1954. Zbl0058.23405
  19. Mayergoyz, I. D., Nonlinear Diffusion of Electromagnetic Fields with Applications to Eddy Currents and Surerconductivity, Academic Press, San Diego 1998. 
  20. Monk, P., Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford 2003. Zbl1024.78009MR2059447
  21. Murat, F., Compacite par compensation, Ann. Sc. Norm. Super. Pisa, Cl. Sci. IV Ser. 5 (1978), 489–507. Zbl0464.46034MR0506997
  22. Nečas, J., Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967. MR0227584
  23. Nečas, J., Introduction to the Theory of Nonlinear Elliptic Equations, John Wiley & Sons Ltd., New York 1986. MR0874752
  24. Prigozhin, L., 10.1006/jcph.1996.0243, J. Comput. Phys. 129 (1996), 1, 190–200. Zbl0866.65081MR1419742DOI10.1006/jcph.1996.0243
  25. Prigozhin, L., 10.1017/S0956792500002333, Eur. J. Appl. Math. 7 (1996), 3, 237–247. Zbl0873.49007MR1401169DOI10.1017/S0956792500002333
  26. Slodička, M., 10.1093/imanum/dri030, IMA J. Numer. Anal. 26 (2006), 1, 173–187. MR2193975DOI10.1093/imanum/dri030
  27. Slodička, M., 10.1016/j.cam.2006.03.055, J. Comput. Appl. Math. 216 (2008), 2, 568–576. MR2406658DOI10.1016/j.cam.2006.03.055
  28. Tartar, L., Compensated compactness and applications to partial differential equations, In: Nonlinear Analysis and Mechanics: Heriot–Watt Symp., Vol. 4, Edinburgh 1979, Res. Notes Math. 39 (1979), pp. 136–212. Zbl0437.35004MR0584398
  29. Vajnberg, M. M., Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, John Wiley & Sons, New York 1973. Zbl0279.47022
  30. Weber, C., 10.1002/mma.1670020103, Math. Methods Appl. Sci. 2 (1980), 12–25. Zbl0432.35032MR0561375DOI10.1002/mma.1670020103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.