Div-curl lemma revisited: Applications in electromagnetism
Kybernetika (2010)
- Volume: 46, Issue: 2, page 328-340
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSlodička, Marián, and Buša, Ján Jr.. "Div-curl lemma revisited: Applications in electromagnetism." Kybernetika 46.2 (2010): 328-340. <http://eudml.org/doc/196724>.
@article{Slodička2010,
abstract = {Two new time-dependent versions of div-curl results in a bounded domain $\Omega \subset \mathbb \{R\}^3$ are presented. We study a limit of the product $\{v\}_k\{w\}_k$, where the sequences $\{v\}_k$ and $\{w\}_k$ belong to $Ł_\{2\}(\Omega )$. In Theorem 2.1 we assume that $\nabla \times \{v\}_k$ is bounded in the $L_p$-norm and $\nabla \cdot \{w\}_k$ is controlled in the $L_r$-norm. In Theorem 2.2 we suppose that $\nabla \times \{w\}_k$ is bounded in the $L_p$-norm and $\nabla \cdot \{w\}_k$ is controlled in the $L_r$-norm. The time derivative of $\{w\}_k$ is bounded in both cases in the norm of $\{-1\}(\Omega )$. The convergence (in the sense of distributions) of $\{v\}_k\{w\}_k$ to the product $\{v\}\{w\}$ of weak limits of $\{v\}_k$ and $\{w\}_k$ is shown.},
author = {Slodička, Marián, Buša, Ján Jr.},
journal = {Kybernetika},
keywords = {compensated compactness; convergence; vector fields; convergence; compensated compactness; vector fields},
language = {eng},
number = {2},
pages = {328-340},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Div-curl lemma revisited: Applications in electromagnetism},
url = {http://eudml.org/doc/196724},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Slodička, Marián
AU - Buša, Ján Jr.
TI - Div-curl lemma revisited: Applications in electromagnetism
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 2
SP - 328
EP - 340
AB - Two new time-dependent versions of div-curl results in a bounded domain $\Omega \subset \mathbb {R}^3$ are presented. We study a limit of the product ${v}_k{w}_k$, where the sequences ${v}_k$ and ${w}_k$ belong to $Ł_{2}(\Omega )$. In Theorem 2.1 we assume that $\nabla \times {v}_k$ is bounded in the $L_p$-norm and $\nabla \cdot {w}_k$ is controlled in the $L_r$-norm. In Theorem 2.2 we suppose that $\nabla \times {w}_k$ is bounded in the $L_p$-norm and $\nabla \cdot {w}_k$ is controlled in the $L_r$-norm. The time derivative of ${w}_k$ is bounded in both cases in the norm of ${-1}(\Omega )$. The convergence (in the sense of distributions) of ${v}_k{w}_k$ to the product ${v}{w}$ of weak limits of ${v}_k$ and ${w}_k$ is shown.
LA - eng
KW - compensated compactness; convergence; vector fields; convergence; compensated compactness; vector fields
UR - http://eudml.org/doc/196724
ER -
References
top- Amrouche, C., Bernardi, C., Dauge, M., Girault, V., 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B, Math. Methods Appl. Sci. 21 (1998), 823–864. MR1626990DOI10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
- Anderson, P. W., Kim, Y. B., 10.1103/RevModPhys.36.39, Rev. Mod. Phys. 36 (1964), 39–43. DOI10.1103/RevModPhys.36.39
- Bean, C. P., 10.1103/RevModPhys.36.31, Rev. Mod. Phys. 36 (1964), 31–39. DOI10.1103/RevModPhys.36.31
- Beasley, M. R., Labusch, R., Webb, W. W, 10.1103/PhysRev.181.682, Phys. Rev. 181 (1969), 682–700. DOI10.1103/PhysRev.181.682
- Bossavit, A., Computational Electromagnetism, Variational Formulations, Complementarity, Edge Elements. (Electromagnetism, Vol. XVIII.) Academic Press, Orlando 1998. Zbl0945.78001MR1488417
- Cessenat, M., Mathematical methods in electromagnetism, Linear theory and applications. (Series on Advances in Mathematics for Applied Sciences, Vol. 41.) World Scientific Publishers, Singapore 1996. Zbl0917.65099MR1409140
- Chapman, S. J., 10.1137/S0036144599371913, SIAM Rev. 42 (2000), 4, 555–598. Zbl0967.82014MR1814048DOI10.1137/S0036144599371913
- Costabel, M., 10.1002/mma.1670120406, Math. Methods Appl. Sci. 12 (1990), 365–368. MR1048563DOI10.1002/mma.1670120406
- Evans, L. C., Partial Differential Equations, (Graduate Studies in Mathematics, Vol. 19.) American Mathematical Society, Providence, RI 1998. MR1625845
- Evans, L. C., Weak Convergence Methods for Nonlinear Partial Differential Equations, (Conference Board of the Mathematical Sciences, Vol. 74. Regional Conference Series in Mathematics.) American Mathematical Society, Providence 1990. Zbl0698.35004MR1034481
- Fabrizio, M., Morro, A., Electromagnetism of Continuous Media, (Mathematical Modelling and Applications.) Oxford University Press, Oxford 2003. Zbl1027.78001MR1996323
- Gasser, I., Marcati, P., On a generalization of the div-curl lemma, Osaka J. Math. 45 (2008), 211–214. Zbl1139.35379MR2416657
- Gilbarg, D., Trudinger, N. S., 10.1007/978-3-642-96379-7, (Grundlehren der Mathematischen Wissenschaften, Vol. 224.) Springer, Berlin 1977. Zbl1042.35002MR0473443DOI10.1007/978-3-642-96379-7
- Jost, J., Partial Differential Equations, (Graduate Texts in Mathematics Vol. 214 .) Springer, New York xxxx. Zbl1121.35001MR1919991
- Kozono, H., Yanagisawa, T., 10.1016/j.jfa.2009.01.010, J. Funct. Anal. 256 (2009), 11, 3847–3859. MR2514064DOI10.1016/j.jfa.2009.01.010
- Kufner, A., John, O., Fučík, S., Function Spaces, (Monograpfs and Textbooks on Mechanics of Solids and Fluids.) Noordhoff International Publishing, Leyden 1977. MR0482102
- London, F., Superfluids, Vol. I.: Macroscopic Theory of Superconductivity. New York: John Wiley & Sons, Inc. London: Chapman & Hall, Ltd., New York 1950. Zbl0058.23405
- London, F., Superfluids, Vol. II. Macroscopic Theory of Superfluid Helium. John Wiley & Sons, Inc., New York 1954. Zbl0058.23405
- Mayergoyz, I. D., Nonlinear Diffusion of Electromagnetic Fields with Applications to Eddy Currents and Surerconductivity, Academic Press, San Diego 1998.
- Monk, P., Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford 2003. Zbl1024.78009MR2059447
- Murat, F., Compacite par compensation, Ann. Sc. Norm. Super. Pisa, Cl. Sci. IV Ser. 5 (1978), 489–507. Zbl0464.46034MR0506997
- Nečas, J., Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967. MR0227584
- Nečas, J., Introduction to the Theory of Nonlinear Elliptic Equations, John Wiley & Sons Ltd., New York 1986. MR0874752
- Prigozhin, L., 10.1006/jcph.1996.0243, J. Comput. Phys. 129 (1996), 1, 190–200. Zbl0866.65081MR1419742DOI10.1006/jcph.1996.0243
- Prigozhin, L., 10.1017/S0956792500002333, Eur. J. Appl. Math. 7 (1996), 3, 237–247. Zbl0873.49007MR1401169DOI10.1017/S0956792500002333
- Slodička, M., 10.1093/imanum/dri030, IMA J. Numer. Anal. 26 (2006), 1, 173–187. MR2193975DOI10.1093/imanum/dri030
- Slodička, M., 10.1016/j.cam.2006.03.055, J. Comput. Appl. Math. 216 (2008), 2, 568–576. MR2406658DOI10.1016/j.cam.2006.03.055
- Tartar, L., Compensated compactness and applications to partial differential equations, In: Nonlinear Analysis and Mechanics: Heriot–Watt Symp., Vol. 4, Edinburgh 1979, Res. Notes Math. 39 (1979), pp. 136–212. Zbl0437.35004MR0584398
- Vajnberg, M. M., Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, John Wiley & Sons, New York 1973. Zbl0279.47022
- Weber, C., 10.1002/mma.1670020103, Math. Methods Appl. Sci. 2 (1980), 12–25. Zbl0432.35032MR0561375DOI10.1002/mma.1670020103
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.