Displaying similar documents to “Div-curl lemma revisited: Applications in electromagnetism”

Maxwell’s equations revisited – mental imagery and mathematical symbols

Matthias Geyer, Jan Hausmann, Konrad Kitzing, Madlyn Senkyr, Stefan Siegmund (2023)

Archivum Mathematicum

Similarity:

Using Maxwell’s mental imagery of a tube of fluid motion of an imaginary fluid, we derive his equations curl 𝐄 = - 𝐁 t , curl 𝐇 = 𝐃 t + 𝐣 , div 𝐃 = ϱ , div 𝐁 = 0 , which together with the constituting relations 𝐃 = ε 0 𝐄 , 𝐁 = μ 0 𝐇 , form what we call today Maxwell’s equations. Main tools are the divergence, curl and gradient integration theorems and a version of Poincare’s lemma formulated in vector calculus notation. Remarks on the history of the development of electrodynamic theory, quotations and references to original and secondary literature...

A remark on the transport equation with b ∈ BV and d i v x b B M O

Paweł Subko (2014)

Colloquium Mathematicae

Similarity:

We investigate the transport equation t u ( t , x ) + b ( t , x ) · D x u ( t , x ) = 0 . Our result improves the classical criteria of uniqueness of weak solutions in the case of irregular coefficients: b ∈ BV, d i v x b B M O . To obtain our result we use a procedure similar to DiPerna and Lions’s one developed for Sobolev vector fields. We apply renormalization theory for BV vector fields and logarithmic type inequalities to obtain energy estimates.

A uniqueness result for the continuity equation in two dimensions

Giovanni Alberti, Stefano Bianchini, Gianluca Crippa (2014)

Journal of the European Mathematical Society

Similarity:

We characterize the autonomous, divergence-free vector fields b on the plane such that the Cauchy problem for the continuity equation t u + . ˙ ( b u ) = 0 admits a unique bounded solution (in the weak sense) for every bounded initial datum; the characterization is given in terms of a property of Sard type for the potential f associated to b . As a corollary we obtain uniqueness under the assumption that the curl of b is a measure. This result can be extended to certain non-autonomous vector fields b with...

A penalty approach for a box constrained variational inequality problem

Zahira Kebaili, Djamel Benterki (2018)

Applications of Mathematics

Similarity:

We propose a penalty approach for a box constrained variational inequality problem ( BVIP ) . This problem is replaced by a sequence of nonlinear equations containing a penalty term. We show that if the penalty parameter tends to infinity, the solution of this sequence converges to that of BVIP when the function F involved is continuous and strongly monotone and the box C contains the origin. We develop the algorithmic aspect with theoretical arguments properly established. The numerical results...

Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems

Christoph Hamburger (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

We prove global partial regularity of weaksolutions of the Dirichlet problem for the nonlinear superelliptic system div A ( x , u , D u ) + B ( x , u , D U ) = 0 , under natural polynomial growth of the coefficient functions A and B . We employ the indirect method of the bilinear form and do not use a Caccioppoli or a reverse Hölder inequality.

T-p(x)-solutions for nonlinear elliptic equations with an L¹-dual datum

El Houssine Azroul, Abdelkrim Barbara, Meryem El Lekhlifi, Mohamed Rhoudaf (2012)

Applicationes Mathematicae

Similarity:

We establish the existence of a T-p(x)-solution for the p(x)-elliptic problem - d i v ( a ( x , u , u ) ) + g ( x , u ) = f - d i v F in Ω, where Ω is a bounded open domain of N , N ≥ 2 and a : Ω × × N N is a Carathéodory function satisfying the natural growth condition and the coercivity condition, but with only a weak monotonicity condition. The right hand side f lies in L¹(Ω) and F belongs to i = 1 N L p ' ( · ) ( Ω ) .

Perturbed nonlinear degenerate problems in N

A. El Khalil, S. El Manouni, M. Ouanan (2009)

Applicationes Mathematicae

Similarity:

Via critical point theory we establish the existence and regularity of solutions for the quasilinear elliptic problem ⎧ d i v ( x , u ) + a ( x ) | u | p - 2 u = g ( x ) | u | p - 2 u + h ( x ) | u | s - 1 u in N ⎨ ⎩ u > 0, l i m | x | u ( x ) = 0 , where 1 < p < N; a(x) is assumed to satisfy a coercivity condition; h(x) and g(x) are not necessarily bounded but satisfy some integrability restrictions.

Convergence of greedy approximation I. General systems

S. V. Konyagin, V. N. Temlyakov (2003)

Studia Mathematica

Similarity:

We consider convergence of thresholding type approximations with regard to general complete minimal systems eₙ in a quasi-Banach space X. Thresholding approximations are defined as follows. Let eₙ* ⊂ X* be the conjugate (dual) system to eₙ; then define for ε > 0 and x ∈ X the thresholding approximations as T ε ( x ) : = j D ε ( x ) e * j ( x ) e j , where D ε ( x ) : = j : | e * j ( x ) | ε . We study a generalized version of T ε that we call the weak thresholding approximation. We modify the T ε ( x ) in the following way. For ε > 0, t ∈ (0,1) we set D t , ε ( x ) : = j : t ε | e * j ( x ) | < ε and consider...

Existence of renormalized solutions for some degenerate and non-coercive elliptic equations

Youssef Akdim, Mohammed Belayachi, Hassane Hjiaj (2023)

Mathematica Bohemica

Similarity:

This paper is devoted to the study of some nonlinear degenerated elliptic equations, whose prototype is given by t 2 - div ( b ( | u | ) | u | p - 2 u ) + d ( | u | ) | u | p = f - div ( c ( x ) | u | α ) in Ω , u = 0 on Ω , t where Ω is a bounded open set of N ( N 2 ) with 1 < p < N and f L 1 ( Ω ) , under some growth conditions on the function b ( · ) and d ( · ) , where c ( · ) is assumed to be in L N ( p - 1 ) ( Ω ) . We show the existence of renormalized solutions for this non-coercive elliptic equation, also, some regularity results will be concluded.

Finite element variational crimes in the case of semiregular elements

Alexander Ženíšek (1996)

Applications of Mathematics

Similarity:

The finite element method for a strongly elliptic mixed boundary value problem is analyzed in the domain Ω whose boundary Ω is formed by two circles Γ 1 , Γ 2 with the same center S 0 and radii R 1 , R 2 = R 1 + ϱ , where ϱ R 1 . On one circle the homogeneous Dirichlet boundary condition and on the other one the nonhomogeneous Neumann boundary condition are prescribed. Both possibilities for u = 0 are considered. The standard finite elements satisfying the minimum angle condition are in this case inconvenient; thus...

Nonlinear diffusion equations with perturbation terms on unbounded domains

Kurima, Shunsuke

Similarity:

This paper considers the initial-boundary value problem for the nonlinear diffusion equation with the perturbation term u t + ( - Δ + 1 ) β ( u ) + G ( u ) = g in Ω × ( 0 , T ) in an unbounded domain Ω N with smooth bounded boundary, where N , T > 0 , β , is a single-valued maximal monotone function on , e.g., β ( r ) = | r | q - 1 r ( q > 0 , q 1 ) and G is a function on which can be regarded as a Lipschitz continuous operator from ( H 1 ( Ω ) ) * to ( H 1 ( Ω ) ) * . The present work establishes existence and estimates for the above problem.

On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values

Nguyen Vu Dzung, Le Thi Phuong Ngoc, Nguyen Huu Nhan, Nguyen Thanh Long (2024)

Mathematica Bohemica

Similarity:

We consider problem (P) of Kirchhoff-Carrier type with nonlinear terms containing a finite number of unknown values u ( η 1 , t ) , , u ( η q , t ) with 0 η 1 < η 2 < < η q < 1 . By applying the linearization method together with the Faedo-Galerkin method and the weak compact method, we first prove the existence and uniqueness of a local weak solution of problem (P). Next, we consider a specific case ( P q ) of (P) in which the nonlinear term contains the sum S q [ u 2 ] ( t ) = q - 1 i = 1 q u 2 ( ( i - 1 ) q , t ) . Under suitable conditions, we prove that the solution of ( P q ) converges to the solution...