Several examples of nonholonomic mechanical systems
Communications in Mathematics (2011)
- Volume: 19, Issue: 1, page 27-56
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topSwaczyna, Martin. "Several examples of nonholonomic mechanical systems." Communications in Mathematics 19.1 (2011): 27-56. <http://eudml.org/doc/196963>.
@article{Swaczyna2011,
abstract = {A unified geometric approach to nonholonomic constrained mechanical systems is applied to several concrete problems from the classical mechanics of particles and rigid bodies. In every of these examples the given constraint conditions are analysed, a corresponding constraint submanifold in the phase space is considered, the corresponding constrained mechanical system is modelled on the constraint submanifold, the reduced equations of motion of this system (i.e. equations of motion defined on the constraint submanifold) are presented. Finally, solvability of these equations is discussed and general solutions in explicit form are found.},
author = {Swaczyna, Martin},
journal = {Communications in Mathematics},
keywords = {Lagrangian system; constraints; nonholonomic constraints; constraint submanifold; canonical distribution; nonholonomic constraint structure; nonholonomic constrained system; reduced equations of motion (without Lagrange multipliers); Chetaev equations of motion (with Lagrange multipliers); Lagrangian system; constraints; nonholonomic constraints; constraint submanifold; canonical distribution; nonholonomic constraint structure; nonholonomic constrained
system; reduced equations of motion (without Lagrange multipliers); Chetaev equations of motion
(with Lagrange multipliers)},
language = {eng},
number = {1},
pages = {27-56},
publisher = {University of Ostrava},
title = {Several examples of nonholonomic mechanical systems},
url = {http://eudml.org/doc/196963},
volume = {19},
year = {2011},
}
TY - JOUR
AU - Swaczyna, Martin
TI - Several examples of nonholonomic mechanical systems
JO - Communications in Mathematics
PY - 2011
PB - University of Ostrava
VL - 19
IS - 1
SP - 27
EP - 56
AB - A unified geometric approach to nonholonomic constrained mechanical systems is applied to several concrete problems from the classical mechanics of particles and rigid bodies. In every of these examples the given constraint conditions are analysed, a corresponding constraint submanifold in the phase space is considered, the corresponding constrained mechanical system is modelled on the constraint submanifold, the reduced equations of motion of this system (i.e. equations of motion defined on the constraint submanifold) are presented. Finally, solvability of these equations is discussed and general solutions in explicit form are found.
LA - eng
KW - Lagrangian system; constraints; nonholonomic constraints; constraint submanifold; canonical distribution; nonholonomic constraint structure; nonholonomic constrained system; reduced equations of motion (without Lagrange multipliers); Chetaev equations of motion (with Lagrange multipliers); Lagrangian system; constraints; nonholonomic constraints; constraint submanifold; canonical distribution; nonholonomic constraint structure; nonholonomic constrained
system; reduced equations of motion (without Lagrange multipliers); Chetaev equations of motion
(with Lagrange multipliers)
UR - http://eudml.org/doc/196963
ER -
References
top- Bloch, A.M., Nonholonomic Mechanics and Control, Springer Verlag, New York 2003 (2003) Zbl1045.70001MR1978379
- Brdička, M., Hladík, A., Theoretical Mechanics, Academia, Praha 1987 (in Czech) (1987) MR0934921
- Bullo, F., Lewis, A.D., Geometric Control of Mechanical Systems, Springer Verlag, New York, Heidelberg, Berlin 2004 (2004) MR2099139
- Cardin, F., Favreti, M., 10.1016/0393-0440(95)00016-X, J. Geom. Phys. 18 1996 295–325 (1996) MR1383219DOI10.1016/0393-0440(95)00016-X
- Cariñena, J.F., Rañada, M.F., 10.1088/0305-4470/26/6/016, J. Phys. A: Math. Gen. 26 1993 1335–1351 (1993) MR1212006DOI10.1088/0305-4470/26/6/016
- Cortés, J., Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Mathematics 1793, Springer, Berlin 2002 (2002) Zbl1009.70001MR1942617
- Cortés, J., León, M. de, Marrero, J.C., Martínez, E., 10.3934/dcds.2009.24.213, Discrete Contin. Dyn. Syst. A 24 2009 213–271 (2009) Zbl1161.70336MR2486576DOI10.3934/dcds.2009.24.213
- León, M. de, Marrero, J.C., Diego, D.M. de, 10.1088/0305-4470/30/4/018, J. Phys. A: Math. Gen. 30 1997 1167–1190 (1997) MR1449273DOI10.1088/0305-4470/30/4/018
- León, M. de, Marrero, J.C., Diego, D.M. de, 10.1007/BF02435796, Int. Journ. Theor. Phys. 36, No.4 1997 979–995 (1997) MR1445410DOI10.1007/BF02435796
- Giachetta, G., 10.1063/1.529693, J. Math. Phys. 33 1992 1652–1655 (1992) Zbl0758.70010MR1158984DOI10.1063/1.529693
- Janová, J., A Geometric theory of mechanical systems with nonholonomic constraints, Thesis, Faculty of Science, Masaryk University, Brno, 2002 (in Czech)
- Janová, J., Musilová, J., 10.1016/j.ijnonlinmec.2008.09.002, Int. J. Non-Linear Mechanics 44 2009 98–105 (2009) DOI10.1016/j.ijnonlinmec.2008.09.002
- Koon, W.S., Marsden, J.E., 10.1016/S0034-4877(97)85617-0, Reports on Mat. Phys. 40 1997 21–62 (1997) MR1492413DOI10.1016/S0034-4877(97)85617-0
- Krupková, O., 10.1063/1.532196, J. Math. Phys. 38 1997 5098–5126 (1997) MR1471916DOI10.1063/1.532196
- Krupková, O., On the geometry of non-holonomic mechanical systems, , O. Kowalski, I. Kolář, D. Krupka, J. Slovák (eds.)Proc. Conf. Diff. Geom. Appl., Brno, August 1998 Masaryk University, Brno 1999 533-546 (1999) MR1708942
- Krupková, O., 10.1016/S0034-4877(02)80025-8, Rep. Math. Phys. 49 2002 269–278 (2002) Zbl1018.37041MR1915806DOI10.1016/S0034-4877(02)80025-8
- Krupková, O., 10.1088/1751-8113/42/18/185201, J. Phys. A: Math. Theor. 42 2009 No. 185201 (2009) Zbl1198.70008MR2591195DOI10.1088/1751-8113/42/18/185201
- Krupková, O., Geometric mechanics on nonholonomic submanifolds, Communications in Mathematics 18 2010 51–77 (2010) Zbl1248.70018MR2848506
- Krupková, O., Musilová, J., 10.1088/0305-4470/34/18/313, J. Phys. A: Math. Gen. 34 2001 3859–3875 (2001) DOI10.1088/0305-4470/34/18/313
- Marsden, J.E., Ratiu, T.S., Introduction to Mechanics and Symmetry, Texts in Applied Mathematics 17, Springer Verlag, New York 1999 2nd ed. (1999) Zbl0933.70003MR1723696
- Massa, E., Pagani, E., A new look at classical mechanics of constrained systems, Ann. Inst. Henri Poincaré 66 1997 1–36 (1997) Zbl0878.70009MR1434114
- Neimark, Ju.I., Fufaev, N.A., Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs 33, American Mathematical Society, Rhode Island 1972 (1972) Zbl0245.70011
- Sarlet, W., Cantrijn, F., Saunders, D.J., 10.1088/0305-4470/28/11/022, J. Phys. A: Math. Gen. 28 1995 3253–3268 (1995) Zbl0858.70013MR1344117DOI10.1088/0305-4470/28/11/022
- Swaczyna, M., On the nonholonomic variational principle, , K. Tas, D. Krupka, O.Krupková, D. Baleanu (eds.)Proc. of the International Workshop on Global Analysis, Ankara, 2004 AIP Conference Proceedings, Vol. 729, Melville, New York 2004 297–306 (2004) Zbl1113.70016MR2215712
- Swaczyna, M., Variational aspects of nonholonomic mechanical systems, Ph.D. Thesis, Faculty of Science, Palacky University, Olomouc, 2005
- Tichá, M., Mechanical systems with nonholonomic constraints, Thesis, Faculty of Science, University of Ostrava, Ostrava, 2004 (in Czech)
- Volný, P., Nonholonomic systems, Ph.D. Thesis, Faculty of Science, Palacky University, Olomouc, 2004
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.