A new look at classical mechanics of constrained systems
Annales de l'I.H.P. Physique théorique (1997)
- Volume: 66, Issue: 1, page 1-36
- ISSN: 0246-0211
Access Full Article
topHow to cite
topMassa, Enrico, and Pagani, Enrico. "A new look at classical mechanics of constrained systems." Annales de l'I.H.P. Physique théorique 66.1 (1997): 1-36. <http://eudml.org/doc/76747>.
@article{Massa1997,
author = {Massa, Enrico, Pagani, Enrico},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {geometry of space of kinetic states; d'Alambert's principle; Gauss' principle; Chetaev's definition of virtual work; principle of determinism; equations of motion},
language = {eng},
number = {1},
pages = {1-36},
publisher = {Gauthier-Villars},
title = {A new look at classical mechanics of constrained systems},
url = {http://eudml.org/doc/76747},
volume = {66},
year = {1997},
}
TY - JOUR
AU - Massa, Enrico
AU - Pagani, Enrico
TI - A new look at classical mechanics of constrained systems
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 66
IS - 1
SP - 1
EP - 36
LA - eng
KW - geometry of space of kinetic states; d'Alambert's principle; Gauss' principle; Chetaev's definition of virtual work; principle of determinism; equations of motion
UR - http://eudml.org/doc/76747
ER -
References
top- [1] J.L. Lagrange, Mécanique Analytique, (Veuve Desaint, Paris, 1788), in Œuvres de Lagrange, Gauthier-Villars, Paris, 1867-1892.
- [2] V.I. Arnold, Mathematical Methods of Classical Mechanics, MIR, Moscow, 1975.
- [3] T. Levi-Civita, U. Amaldi, Lezioni di Meccanica Razionale, Zanichelli, Bologna, 1984, first edition 1922, second edition 1929.
- [4] K. Gauss, Uber ein neues allgemeines Grundgesetz der Mechanik, Crelle J. reine Math., Vol. 4, 1829, pp. 232.
- [5] E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, (4th ed.), Cambridge University Press, Cambridge, 1959. Zbl0049.40801MR103613
- [6] G. Hamel, Theoretische Mechanik. Eine einheitliche Einfuhrung in die gesamte Mechanik, Springer-Verlag, Berlin, 1949. Zbl0036.24301MR34137
- [7] A. Sommerfeld, Mechanics, Lectures on Theoretical Physics, Vol. 1, Academic Press, New York, San Francisco, London, 1942. Zbl0048.41806
- [8] D.J. Saunders, The Geometry of Jet Bundles, London Mathematical Society, Lecture Note Series142, Cambridge University Press, 1989. Zbl0665.58002MR989588
- [9] M. Crampin, G.E. Prince and G. Thompson, A Geometrical Version of the Helmholtz Conditions in Time-Dependent Lagrangian Dynamics, J. Phys. A: Math. Gen., Vol. 17, 1984, pp. 1437-1447. Zbl0545.58020MR748776
- [10] F. Cantrijn, J.F. CARIÑENA, M. Crampin and L.A. Ibort, Reduction of Degenerate Lagrangian Systems, J. G. P., Vol. 3, 1986, pp. 353-400. Zbl0621.58020MR894631
- [11] W. Sarlet, F. Cantrijn and M. Crampin, A New Look at Second Order Equations and Lagrangian Mechanics, J. Phys. A: Math. Gen., Vol. 17, 1984, pp. 1999-2009. Zbl0542.58011MR763792
- [12] E. Massa and E. Pagani, Classical Dynamics of non-holonomic systems: a geometric approach, Ann. Inst. Henri Poicaré, Vol. 55, 1991, pp. 511-544. Zbl0731.70012MR1130215
- [13] E. Massa and E. Pagani, Jet bundle geometry, dynamical connections, and the inverse problem of Lagrangian Mechanics, Ann. Inst. Henri Poicarré, Vol. 61, 1994, pp. 17-62. Zbl0813.70004MR1303184
- [14] N.G. Chetaev, O printsipe Gaussa (On the Gauss Principle), Izd. Fiz.-Matem. Obshch. pri Kazansk. Univ., Ser. 3, Vol. 6, 1932-1933, pp. 323-326, Izvestia of the Physico-Mathematical Society of Kazan University, Series 3, Vol. 6, 1932-1933, pp. 62-67.
- [15] N.G. Chetaev, Papers on Analytical Mechanics. On the Gauss Principles, Moscow, Izd. Akad. Nauk SSSR, 1962.
- [16] V.V. Rumiantsev, Certain Variational Principles of Mechanics, in Adv. Theor. Appl. Mech., A. Ishlinsky and F. Chernousko Eds., English translation, MIR Publishers, Moscow, 1981.
- [17] I.I. Neimark and N.A. Fufaev, Dynamics of Non-holonomic Systems, Translations of Mathematical Monographs, Vol. 33, American Mathematical Society, Providence, Rhode Island, 1972. Zbl0245.70011
- [18] Y. Pironneau, Sur les liaisons non holonômes, non linéaires déplacements virtuels à travail nul, conditions de Chetaev, Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Academy of Sciences of Turin, Turin, June 7-11, 1982, Atti della Accademia delle Scienze di Torino, Supplemento al Vol. 117, (1983), p. 671-686. MR773517
- [19] M. de LEON and P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North Holland, Amsterdam, 1989. Zbl0687.53001MR1021489
- [20] W. Sarlet, F. Cantrijn and D.J. Saunders, A Geometrical Framework for the Study of Non-holonomic Lagrangian Systems, J. Phys. A.: Math. Gen., Vol. 28, 1995, pp. 3253-3268. Zbl0858.70013MR1344117
- [21] C. Godbillon, Géométrie Différentielle et Mécanique Analytique, Hermann, Paris, 1969. Zbl0174.24602MR242081
- [22] R. Abraham and J.E. Marsden, Foundations of Mechanics, The Benjamin/Cumming Publishing Company, Reading (Massachussets), 1978. Zbl0393.70001MR515141
- [23] R.B. Ash, Measure, Integration and Functional Analysis, Academic Press, New York and London, 1972. Zbl0249.28001MR435321
- [24] K. Yosida, Functional Analysis, Springer-Verlag, Berlin and New York, 1968. MR239384
- [25] F. Cardin and G. Zanzotto, On Constrained Mechanical Systems: D'Alembert and Gauss' Principles, J. Math. Phys., Vol. 30, 1989, pp. 1473-1479. Zbl0678.70018MR1002251
Citations in EuDML Documents
top- Stefano Vignolo, Aspetti di gauge in dinamica lagrangiana ed hamiltoniana classica
- Danilo Bruno, Meccanica Lagrangiana ed Hamiltoniana anolonoma: un approccio Gauge-invariante
- Martin Swaczyna, Several examples of nonholonomic mechanical systems
- Olga Rossi, Jana Musilová, On the inverse variational problem in nonholonomic mechanics
- Michal Čech, Jana Musilová, Symmetries and currents in nonholonomic mechanics
- Olga Krupková, Geometric mechanics on nonholonomic submanifolds
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.