A new look at classical mechanics of constrained systems

Enrico Massa; Enrico Pagani

Annales de l'I.H.P. Physique théorique (1997)

  • Volume: 66, Issue: 1, page 1-36
  • ISSN: 0246-0211

How to cite


Massa, Enrico, and Pagani, Enrico. "A new look at classical mechanics of constrained systems." Annales de l'I.H.P. Physique théorique 66.1 (1997): 1-36. <http://eudml.org/doc/76747>.

author = {Massa, Enrico, Pagani, Enrico},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {geometry of space of kinetic states; d'Alambert's principle; Gauss' principle; Chetaev's definition of virtual work; principle of determinism; equations of motion},
language = {eng},
number = {1},
pages = {1-36},
publisher = {Gauthier-Villars},
title = {A new look at classical mechanics of constrained systems},
url = {http://eudml.org/doc/76747},
volume = {66},
year = {1997},

AU - Massa, Enrico
AU - Pagani, Enrico
TI - A new look at classical mechanics of constrained systems
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 66
IS - 1
SP - 1
EP - 36
LA - eng
KW - geometry of space of kinetic states; d'Alambert's principle; Gauss' principle; Chetaev's definition of virtual work; principle of determinism; equations of motion
UR - http://eudml.org/doc/76747
ER -


  1. [1] J.L. Lagrange, Mécanique Analytique, (Veuve Desaint, Paris, 1788), in Œuvres de Lagrange, Gauthier-Villars, Paris, 1867-1892. 
  2. [2] V.I. Arnold, Mathematical Methods of Classical Mechanics, MIR, Moscow, 1975. 
  3. [3] T. Levi-Civita, U. Amaldi, Lezioni di Meccanica Razionale, Zanichelli, Bologna, 1984, first edition 1922, second edition 1929. 
  4. [4] K. Gauss, Uber ein neues allgemeines Grundgesetz der Mechanik, Crelle J. reine Math., Vol. 4, 1829, pp. 232. 
  5. [5] E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, (4th ed.), Cambridge University Press, Cambridge, 1959. Zbl0049.40801MR103613
  6. [6] G. Hamel, Theoretische Mechanik. Eine einheitliche Einfuhrung in die gesamte Mechanik, Springer-Verlag, Berlin, 1949. Zbl0036.24301MR34137
  7. [7] A. Sommerfeld, Mechanics, Lectures on Theoretical Physics, Vol. 1, Academic Press, New York, San Francisco, London, 1942. Zbl0048.41806
  8. [8] D.J. Saunders, The Geometry of Jet Bundles, London Mathematical Society, Lecture Note Series142, Cambridge University Press, 1989. Zbl0665.58002MR989588
  9. [9] M. Crampin, G.E. Prince and G. Thompson, A Geometrical Version of the Helmholtz Conditions in Time-Dependent Lagrangian Dynamics, J. Phys. A: Math. Gen., Vol. 17, 1984, pp. 1437-1447. Zbl0545.58020MR748776
  10. [10] F. Cantrijn, J.F. CARIÑENA, M. Crampin and L.A. Ibort, Reduction of Degenerate Lagrangian Systems, J. G. P., Vol. 3, 1986, pp. 353-400. Zbl0621.58020MR894631
  11. [11] W. Sarlet, F. Cantrijn and M. Crampin, A New Look at Second Order Equations and Lagrangian Mechanics, J. Phys. A: Math. Gen., Vol. 17, 1984, pp. 1999-2009. Zbl0542.58011MR763792
  12. [12] E. Massa and E. Pagani, Classical Dynamics of non-holonomic systems: a geometric approach, Ann. Inst. Henri Poicaré, Vol. 55, 1991, pp. 511-544. Zbl0731.70012MR1130215
  13. [13] E. Massa and E. Pagani, Jet bundle geometry, dynamical connections, and the inverse problem of Lagrangian Mechanics, Ann. Inst. Henri Poicarré, Vol. 61, 1994, pp. 17-62. Zbl0813.70004MR1303184
  14. [14] N.G. Chetaev, O printsipe Gaussa (On the Gauss Principle), Izd. Fiz.-Matem. Obshch. pri Kazansk. Univ., Ser. 3, Vol. 6, 1932-1933, pp. 323-326, Izvestia of the Physico-Mathematical Society of Kazan University, Series 3, Vol. 6, 1932-1933, pp. 62-67. 
  15. [15] N.G. Chetaev, Papers on Analytical Mechanics. On the Gauss Principles, Moscow, Izd. Akad. Nauk SSSR, 1962. 
  16. [16] V.V. Rumiantsev, Certain Variational Principles of Mechanics, in Adv. Theor. Appl. Mech., A. Ishlinsky and F. Chernousko Eds., English translation, MIR Publishers, Moscow, 1981. 
  17. [17] I.I. Neimark and N.A. Fufaev, Dynamics of Non-holonomic Systems, Translations of Mathematical Monographs, Vol. 33, American Mathematical Society, Providence, Rhode Island, 1972. Zbl0245.70011
  18. [18] Y. Pironneau, Sur les liaisons non holonômes, non linéaires déplacements virtuels à travail nul, conditions de Chetaev, Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Academy of Sciences of Turin, Turin, June 7-11, 1982, Atti della Accademia delle Scienze di Torino, Supplemento al Vol. 117, (1983), p. 671-686. MR773517
  19. [19] M. de LEON and P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North Holland, Amsterdam, 1989. Zbl0687.53001MR1021489
  20. [20] W. Sarlet, F. Cantrijn and D.J. Saunders, A Geometrical Framework for the Study of Non-holonomic Lagrangian Systems, J. Phys. A.: Math. Gen., Vol. 28, 1995, pp. 3253-3268. Zbl0858.70013MR1344117
  21. [21] C. Godbillon, Géométrie Différentielle et Mécanique Analytique, Hermann, Paris, 1969. Zbl0174.24602MR242081
  22. [22] R. Abraham and J.E. Marsden, Foundations of Mechanics, The Benjamin/Cumming Publishing Company, Reading (Massachussets), 1978. Zbl0393.70001MR515141
  23. [23] R.B. Ash, Measure, Integration and Functional Analysis, Academic Press, New York and London, 1972. Zbl0249.28001MR435321
  24. [24] K. Yosida, Functional Analysis, Springer-Verlag, Berlin and New York, 1968. MR239384
  25. [25] F. Cardin and G. Zanzotto, On Constrained Mechanical Systems: D'Alembert and Gauss' Principles, J. Math. Phys., Vol. 30, 1989, pp. 1473-1479. Zbl0678.70018MR1002251

Citations in EuDML Documents

  1. Stefano Vignolo, Aspetti di gauge in dinamica lagrangiana ed hamiltoniana classica
  2. Martin Swaczyna, Several examples of nonholonomic mechanical systems
  3. Danilo Bruno, Meccanica Lagrangiana ed Hamiltoniana anolonoma: un approccio Gauge-invariante
  4. Olga Rossi, Jana Musilová, On the inverse variational problem in nonholonomic mechanics
  5. Michal Čech, Jana Musilová, Symmetries and currents in nonholonomic mechanics
  6. Olga Krupková, Geometric mechanics on nonholonomic submanifolds

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.