Symmetries and currents in nonholonomic mechanics

Michal Čech; Jana Musilová

Communications in Mathematics (2014)

  • Volume: 22, Issue: 2, page 159-184
  • ISSN: 1804-1388

Abstract

top
In this paper we derive general equations for constraint Noethertype symmetries of a first order non-holonomic mechanical system and the corresponding currents, i.e. functions constant along trajectories of the nonholonomic system. The approach is based on a consistent and effective geometrical theory of nonholonomic constrained systems on fibred manifolds and their jet prolongations, first presented and developed by Olga Rossi. As a representative example of application of the geometrical theory and the equations of symmetries and conservation laws derived within this framework we present the Chaplygin sleigh. It is a mechanical system subject to one linear nonholonomic constraint enforcing the plane motion. We describe the trajectories of the Chaplygin sleigh and show that the usual kinetic energy conservation law holds along them, the time translation generator being the corresponding constraint symmetry and simultaneously the symmetry of nonholonomic equations of motion. Moreover, the expressions for two other currents are obtained. Remarkably, the corresponding constraint symmetries are not symmetries of nonholonomic equations of motion. The physical interpretation of results is emphasized.

How to cite

top

Čech, Michal, and Musilová, Jana. "Symmetries and currents in nonholonomic mechanics." Communications in Mathematics 22.2 (2014): 159-184. <http://eudml.org/doc/269854>.

@article{Čech2014,
abstract = {In this paper we derive general equations for constraint Noethertype symmetries of a first order non-holonomic mechanical system and the corresponding currents, i.e. functions constant along trajectories of the nonholonomic system. The approach is based on a consistent and effective geometrical theory of nonholonomic constrained systems on fibred manifolds and their jet prolongations, first presented and developed by Olga Rossi. As a representative example of application of the geometrical theory and the equations of symmetries and conservation laws derived within this framework we present the Chaplygin sleigh. It is a mechanical system subject to one linear nonholonomic constraint enforcing the plane motion. We describe the trajectories of the Chaplygin sleigh and show that the usual kinetic energy conservation law holds along them, the time translation generator being the corresponding constraint symmetry and simultaneously the symmetry of nonholonomic equations of motion. Moreover, the expressions for two other currents are obtained. Remarkably, the corresponding constraint symmetries are not symmetries of nonholonomic equations of motion. The physical interpretation of results is emphasized.},
author = {Čech, Michal, Musilová, Jana},
journal = {Communications in Mathematics},
keywords = {nonholonomic mechanical systems; nonholonomic constraint submanifold; canonical distribution; reduced equations of motion; symmetries of nonholonomic systems; conservation laws; Chaplygin sleigh; nonholonomic mechanical systems; nonholonomic constraint submanifold; reduced equations of motion; symmetries; conservation laws; Chaplygin sleigh},
language = {eng},
number = {2},
pages = {159-184},
publisher = {University of Ostrava},
title = {Symmetries and currents in nonholonomic mechanics},
url = {http://eudml.org/doc/269854},
volume = {22},
year = {2014},
}

TY - JOUR
AU - Čech, Michal
AU - Musilová, Jana
TI - Symmetries and currents in nonholonomic mechanics
JO - Communications in Mathematics
PY - 2014
PB - University of Ostrava
VL - 22
IS - 2
SP - 159
EP - 184
AB - In this paper we derive general equations for constraint Noethertype symmetries of a first order non-holonomic mechanical system and the corresponding currents, i.e. functions constant along trajectories of the nonholonomic system. The approach is based on a consistent and effective geometrical theory of nonholonomic constrained systems on fibred manifolds and their jet prolongations, first presented and developed by Olga Rossi. As a representative example of application of the geometrical theory and the equations of symmetries and conservation laws derived within this framework we present the Chaplygin sleigh. It is a mechanical system subject to one linear nonholonomic constraint enforcing the plane motion. We describe the trajectories of the Chaplygin sleigh and show that the usual kinetic energy conservation law holds along them, the time translation generator being the corresponding constraint symmetry and simultaneously the symmetry of nonholonomic equations of motion. Moreover, the expressions for two other currents are obtained. Remarkably, the corresponding constraint symmetries are not symmetries of nonholonomic equations of motion. The physical interpretation of results is emphasized.
LA - eng
KW - nonholonomic mechanical systems; nonholonomic constraint submanifold; canonical distribution; reduced equations of motion; symmetries of nonholonomic systems; conservation laws; Chaplygin sleigh; nonholonomic mechanical systems; nonholonomic constraint submanifold; reduced equations of motion; symmetries; conservation laws; Chaplygin sleigh
UR - http://eudml.org/doc/269854
ER -

References

top
  1. Bahar, L.Y., 10.1016/S0020-7462(99)00045-1, Int. J. Non-Linear Mech., 35, 2000, 613-625, (2000) MR1761376DOI10.1016/S0020-7462(99)00045-1
  2. Bloch, A.M., Baillieul, (with the collaboration of J., Marsden), P.E. Crouch and J.E., Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics 24, 2003, Springer Science + Business Media, LLC, (2003) MR1978379
  3. Bullo, F., Lewis, A.D., 10.1007/978-1-4899-7276-7_4, 2005, Springer Science + Business Media, Inc., New York, (2005) MR2099139DOI10.1007/978-1-4899-7276-7_4
  4. Cantrijn, F., 10.1063/1.525569, J. Math. Phys., 23, 1982, 1589-1595, (1982) Zbl0496.70032MR0668100DOI10.1063/1.525569
  5. Čech, M., Musilová, J., Symmetries and conservation laws for Chaplygin sleigh, Balkan J. Geom. Appl. Submitted.. 
  6. Chetaev, N.G., On the Gauss principle, Izv. Kazan Fiz.-Mat. Obsc., 6, 1932–1933, 323-326, (in Russian). (1932) 
  7. Monforte, J. Cortés, 10.1007/b84020, 2002, Springer, Berlin, (2002) MR1942617DOI10.1007/b84020
  8. Czudková, L., Musilová, J., A practical application of the geometrical theory on fibred manifolds to a planimeter motion, Int. J. Non-Linear Mech., 50, 2012, 19-24. (2012) 
  9. León, M. de, Marrero, J.C., Diego, D. Martín de, 10.3934/jgm.2010.2.159, J. Geom. Mech., 2, 2010, 159-198, (See also arXiv: 0801.4358v3 [mat-ph] 13 Nov 2009.). (2010) MR2660714DOI10.3934/jgm.2010.2.159
  10. Janová, J., Musilová, J., 10.1016/j.ijnonlinmec.2008.09.002, Int. J. Non-Linear Mech., 44, 2009, 98-105, (2009) Zbl1203.70036DOI10.1016/j.ijnonlinmec.2008.09.002
  11. Janová, J., Musilová, J., 10.1088/0143-0807/31/2/011, Eur. J. Phys., 31, 2010, 333-345, (2010) DOI10.1088/0143-0807/31/2/011
  12. Janová, J., Musilová, J., 10.1088/0143-0807/32/1/023, Eur. J. Phys., 32, 2011, 257-269, (2011) DOI10.1088/0143-0807/32/1/023
  13. Janová, J., Musilová, J., Bartoš, J., 10.1088/0143-0807/30/6/005, Eur. J. Phys., 30, 2010, 1257-1269, (2010) DOI10.1088/0143-0807/30/6/005
  14. Krupková, O., 10.1063/1.532196, J. Math. Phys., 38, 1997, 5098-5126, (1997) MR1471916DOI10.1063/1.532196
  15. Krupková, O., 10.1063/1.533411, J. Math. Phys., 41, 2000, 5304-5324, (2000) MR1770957DOI10.1063/1.533411
  16. Krupková, O., 10.1016/S0034-4877(02)80025-8, Rep. Math. Phys., 49, 2002, 269-278, (2002) Zbl1018.37041MR1915806DOI10.1016/S0034-4877(02)80025-8
  17. Krupková, O., Variational metric structures, Publ. Math. Debrecen, 62, 3–4, 2003, 461-495, (2003) Zbl1026.53041MR2008109
  18. Krupková, O., Noether Theorem, 90 years on, XVII. International Fall Workshop, 2009, 159-170, American Institute of Physics, (2009) 
  19. Krupková, O., 10.1088/1751-8113/42/18/185201, J. Phys. A: Math. Theor., 42, 2009, 185201 (40pp). (2009) Zbl1198.70008MR2591195DOI10.1088/1751-8113/42/18/185201
  20. Krupková, O., The geometric mechanics on nonholonomic submanifolds, Comm. Math., 18, 2010, 51-77, (2010) MR2848506
  21. Krupková, O., Musilová, J., 10.1088/0305-4470/34/18/313, J. Phys. A: Math. Gen., 34, 2001, 3859-3875, (2001) MR1840850DOI10.1088/0305-4470/34/18/313
  22. Krupková, O., Musilová, J., 10.1016/S0034-4877(05)80028-X, Rep. Math. Phys., 55, 2, 2005, 211-220, (2005) Zbl1134.37356MR2139585DOI10.1016/S0034-4877(05)80028-X
  23. Massa, E., Pagani, E., Classical mechanics of non-holonomic systems: a geometric approach, Ann. Inst. Henri Poincaré, 55, 1991, 511-544, (1991) MR1130215
  24. Massa, E., Pagani, E., A new look at classical mechanics of constrained systems, Ann. Inst. Henri Poincaré, 66, 1997, 1-36, (1997) Zbl0878.70009MR1434114
  25. Mráz, M., Musilová, J., Variational compatibility of force laws in mechanics, Differential Geometry and its Applications, 1999, 553-560, Masaryk Univ., Brno, (1999) MR1712786
  26. Neimark, Ju.I., Fufaev, N.A., Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, vol. 33, 1972, American Mathematical Society, Rhode Island, (1972) 
  27. Novotný, J., On the inverse variational problem in the classical mechanics, Proc. Conf. on Diff. Geom. and Its Appl. 1980, 1981, 189-195, Universita Karlova, Prague, (1981) MR0663225
  28. Popescu, P., Ida, Ch., Nonlinear constraints in nonholonomic mechanics, arXiv: submit/1026356 [marh-ph] 20 Jul 2014.. MR3294222
  29. Roithmayr, C.M., Hodges, D.H., 10.1016/j.ijnonlinmec.2009.12.009, Int. J. Non-Linear Mech., 45, 2010, 357-369, (2010) DOI10.1016/j.ijnonlinmec.2009.12.009
  30. Rossi, O., Musilová, J., On the inverse variational problem in nonholonomic mechanics, Comm. Math., 20, 1, 2012, 41-62, (2012) Zbl1271.49027MR3001631
  31. Rossi, O., Musilová, J., The relativistic mechanics in a nonholonomic setting: A unified approach to particles with non-zero mass and massless particles, J. Phys A: Math. Theor., 45, 2012, 255202. (2012) MR2930485
  32. Rossi, O., Paláček, R., On the Zermelo problem in Riemannian manifolds, Balkan Journal of Geometry and Its Applications, 17, 2, 2012, 77-81, (2012) MR2911969
  33. Sarlet, W., Cantrijn, F., Special symmetries for Lagrangian systems snd their analogues in nonconservative mechanics, Difrerential Geometry and its Applications. Proc. Conf. Nové Město na Moravě, Czechoslovakia, September 1983, 1984, 247-260, J.E. Purkyně University, Brno, (1984) MR0793214
  34. Sarlet, W., Cantrijn, F., Saunders, D.J., 10.1088/0305-4470/28/11/022, J. Phys. A: Math. Gen., 28, 1995, 3253-3268, (1995) Zbl0858.70013MR1344117DOI10.1088/0305-4470/28/11/022
  35. Sarlet, W., Saunders, D.J., Cantrijn, F., 10.1088/0305-4470/29/14/042, J. Phys. A: Math. Gen., 29, 1996, 4265-4274, (1996) Zbl0900.70196MR1406933DOI10.1088/0305-4470/29/14/042
  36. Sarlet, W., Saunders, D.J., Cantrijn, F., 10.1016/j.geomphys.2004.12.006, Journal of Geometry and Physics, 55, 2005, 207-225, (2005) Zbl1093.37026MR2157043DOI10.1016/j.geomphys.2004.12.006
  37. Swaczyna, M., Several examples of nonholonomic mechanical systems, Comm. Math., 19, 2011, 27-56, (2011) MR2855390
  38. Swaczyna, M., Volný, P., 10.1016/S0034-4877(14)60039-2, Rep. Math. Phys., 73, 2, 2014, 177-200, (2014) Zbl1308.70017MR3285508DOI10.1016/S0034-4877(14)60039-2
  39. Udwadia, F.E., 10.1016/S0020-7462(96)00116-3, Int. J. Non-Linear Mech., 31, 1996, 951-958, (1996) Zbl0891.70010DOI10.1016/S0020-7462(96)00116-3
  40. Udwadia, F.E., Kalaba, R.E., 10.1016/S0020-7462(01)00033-6, Int. J. Non-Linear Mech., 37, 2002, 1079-1090, (2002) MR1897289DOI10.1016/S0020-7462(01)00033-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.