Symmetries and currents in nonholonomic mechanics
Communications in Mathematics (2014)
- Volume: 22, Issue: 2, page 159-184
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topČech, Michal, and Musilová, Jana. "Symmetries and currents in nonholonomic mechanics." Communications in Mathematics 22.2 (2014): 159-184. <http://eudml.org/doc/269854>.
@article{Čech2014,
abstract = {In this paper we derive general equations for constraint Noethertype symmetries of a first order non-holonomic mechanical system and the corresponding currents, i.e. functions constant along trajectories of the nonholonomic system. The approach is based on a consistent and effective geometrical theory of nonholonomic constrained systems on fibred manifolds and their jet prolongations, first presented and developed by Olga Rossi. As a representative example of application of the geometrical theory and the equations of symmetries and conservation laws derived within this framework we present the Chaplygin sleigh. It is a mechanical system subject to one linear nonholonomic constraint enforcing the plane motion. We describe the trajectories of the Chaplygin sleigh and show that the usual kinetic energy conservation law holds along them, the time translation generator being the corresponding constraint symmetry and simultaneously the symmetry of nonholonomic equations of motion. Moreover, the expressions for two other currents are obtained. Remarkably, the corresponding constraint symmetries are not symmetries of nonholonomic equations of motion. The physical interpretation of results is emphasized.},
author = {Čech, Michal, Musilová, Jana},
journal = {Communications in Mathematics},
keywords = {nonholonomic mechanical systems; nonholonomic constraint submanifold; canonical distribution; reduced equations of motion; symmetries of nonholonomic systems; conservation laws; Chaplygin sleigh; nonholonomic mechanical systems; nonholonomic constraint submanifold; reduced equations of motion; symmetries; conservation laws; Chaplygin sleigh},
language = {eng},
number = {2},
pages = {159-184},
publisher = {University of Ostrava},
title = {Symmetries and currents in nonholonomic mechanics},
url = {http://eudml.org/doc/269854},
volume = {22},
year = {2014},
}
TY - JOUR
AU - Čech, Michal
AU - Musilová, Jana
TI - Symmetries and currents in nonholonomic mechanics
JO - Communications in Mathematics
PY - 2014
PB - University of Ostrava
VL - 22
IS - 2
SP - 159
EP - 184
AB - In this paper we derive general equations for constraint Noethertype symmetries of a first order non-holonomic mechanical system and the corresponding currents, i.e. functions constant along trajectories of the nonholonomic system. The approach is based on a consistent and effective geometrical theory of nonholonomic constrained systems on fibred manifolds and their jet prolongations, first presented and developed by Olga Rossi. As a representative example of application of the geometrical theory and the equations of symmetries and conservation laws derived within this framework we present the Chaplygin sleigh. It is a mechanical system subject to one linear nonholonomic constraint enforcing the plane motion. We describe the trajectories of the Chaplygin sleigh and show that the usual kinetic energy conservation law holds along them, the time translation generator being the corresponding constraint symmetry and simultaneously the symmetry of nonholonomic equations of motion. Moreover, the expressions for two other currents are obtained. Remarkably, the corresponding constraint symmetries are not symmetries of nonholonomic equations of motion. The physical interpretation of results is emphasized.
LA - eng
KW - nonholonomic mechanical systems; nonholonomic constraint submanifold; canonical distribution; reduced equations of motion; symmetries of nonholonomic systems; conservation laws; Chaplygin sleigh; nonholonomic mechanical systems; nonholonomic constraint submanifold; reduced equations of motion; symmetries; conservation laws; Chaplygin sleigh
UR - http://eudml.org/doc/269854
ER -
References
top- Bahar, L.Y., 10.1016/S0020-7462(99)00045-1, Int. J. Non-Linear Mech., 35, 2000, 613-625, (2000) MR1761376DOI10.1016/S0020-7462(99)00045-1
- Bloch, A.M., Baillieul, (with the collaboration of J., Marsden), P.E. Crouch and J.E., Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics 24, 2003, Springer Science + Business Media, LLC, (2003) MR1978379
- Bullo, F., Lewis, A.D., 10.1007/978-1-4899-7276-7_4, 2005, Springer Science + Business Media, Inc., New York, (2005) MR2099139DOI10.1007/978-1-4899-7276-7_4
- Cantrijn, F., 10.1063/1.525569, J. Math. Phys., 23, 1982, 1589-1595, (1982) Zbl0496.70032MR0668100DOI10.1063/1.525569
- Čech, M., Musilová, J., Symmetries and conservation laws for Chaplygin sleigh, Balkan J. Geom. Appl. Submitted..
- Chetaev, N.G., On the Gauss principle, Izv. Kazan Fiz.-Mat. Obsc., 6, 1932–1933, 323-326, (in Russian). (1932)
- Monforte, J. Cortés, 10.1007/b84020, 2002, Springer, Berlin, (2002) MR1942617DOI10.1007/b84020
- Czudková, L., Musilová, J., A practical application of the geometrical theory on fibred manifolds to a planimeter motion, Int. J. Non-Linear Mech., 50, 2012, 19-24. (2012)
- León, M. de, Marrero, J.C., Diego, D. Martín de, 10.3934/jgm.2010.2.159, J. Geom. Mech., 2, 2010, 159-198, (See also arXiv: 0801.4358v3 [mat-ph] 13 Nov 2009.). (2010) MR2660714DOI10.3934/jgm.2010.2.159
- Janová, J., Musilová, J., 10.1016/j.ijnonlinmec.2008.09.002, Int. J. Non-Linear Mech., 44, 2009, 98-105, (2009) Zbl1203.70036DOI10.1016/j.ijnonlinmec.2008.09.002
- Janová, J., Musilová, J., 10.1088/0143-0807/31/2/011, Eur. J. Phys., 31, 2010, 333-345, (2010) DOI10.1088/0143-0807/31/2/011
- Janová, J., Musilová, J., 10.1088/0143-0807/32/1/023, Eur. J. Phys., 32, 2011, 257-269, (2011) DOI10.1088/0143-0807/32/1/023
- Janová, J., Musilová, J., Bartoš, J., 10.1088/0143-0807/30/6/005, Eur. J. Phys., 30, 2010, 1257-1269, (2010) DOI10.1088/0143-0807/30/6/005
- Krupková, O., 10.1063/1.532196, J. Math. Phys., 38, 1997, 5098-5126, (1997) MR1471916DOI10.1063/1.532196
- Krupková, O., 10.1063/1.533411, J. Math. Phys., 41, 2000, 5304-5324, (2000) MR1770957DOI10.1063/1.533411
- Krupková, O., 10.1016/S0034-4877(02)80025-8, Rep. Math. Phys., 49, 2002, 269-278, (2002) Zbl1018.37041MR1915806DOI10.1016/S0034-4877(02)80025-8
- Krupková, O., Variational metric structures, Publ. Math. Debrecen, 62, 3–4, 2003, 461-495, (2003) Zbl1026.53041MR2008109
- Krupková, O., Noether Theorem, 90 years on, XVII. International Fall Workshop, 2009, 159-170, American Institute of Physics, (2009)
- Krupková, O., 10.1088/1751-8113/42/18/185201, J. Phys. A: Math. Theor., 42, 2009, 185201 (40pp). (2009) Zbl1198.70008MR2591195DOI10.1088/1751-8113/42/18/185201
- Krupková, O., The geometric mechanics on nonholonomic submanifolds, Comm. Math., 18, 2010, 51-77, (2010) MR2848506
- Krupková, O., Musilová, J., 10.1088/0305-4470/34/18/313, J. Phys. A: Math. Gen., 34, 2001, 3859-3875, (2001) MR1840850DOI10.1088/0305-4470/34/18/313
- Krupková, O., Musilová, J., 10.1016/S0034-4877(05)80028-X, Rep. Math. Phys., 55, 2, 2005, 211-220, (2005) Zbl1134.37356MR2139585DOI10.1016/S0034-4877(05)80028-X
- Massa, E., Pagani, E., Classical mechanics of non-holonomic systems: a geometric approach, Ann. Inst. Henri Poincaré, 55, 1991, 511-544, (1991) MR1130215
- Massa, E., Pagani, E., A new look at classical mechanics of constrained systems, Ann. Inst. Henri Poincaré, 66, 1997, 1-36, (1997) Zbl0878.70009MR1434114
- Mráz, M., Musilová, J., Variational compatibility of force laws in mechanics, Differential Geometry and its Applications, 1999, 553-560, Masaryk Univ., Brno, (1999) MR1712786
- Neimark, Ju.I., Fufaev, N.A., Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, vol. 33, 1972, American Mathematical Society, Rhode Island, (1972)
- Novotný, J., On the inverse variational problem in the classical mechanics, Proc. Conf. on Diff. Geom. and Its Appl. 1980, 1981, 189-195, Universita Karlova, Prague, (1981) MR0663225
- Popescu, P., Ida, Ch., Nonlinear constraints in nonholonomic mechanics, arXiv: submit/1026356 [marh-ph] 20 Jul 2014.. MR3294222
- Roithmayr, C.M., Hodges, D.H., 10.1016/j.ijnonlinmec.2009.12.009, Int. J. Non-Linear Mech., 45, 2010, 357-369, (2010) DOI10.1016/j.ijnonlinmec.2009.12.009
- Rossi, O., Musilová, J., On the inverse variational problem in nonholonomic mechanics, Comm. Math., 20, 1, 2012, 41-62, (2012) Zbl1271.49027MR3001631
- Rossi, O., Musilová, J., The relativistic mechanics in a nonholonomic setting: A unified approach to particles with non-zero mass and massless particles, J. Phys A: Math. Theor., 45, 2012, 255202. (2012) MR2930485
- Rossi, O., Paláček, R., On the Zermelo problem in Riemannian manifolds, Balkan Journal of Geometry and Its Applications, 17, 2, 2012, 77-81, (2012) MR2911969
- Sarlet, W., Cantrijn, F., Special symmetries for Lagrangian systems snd their analogues in nonconservative mechanics, Difrerential Geometry and its Applications. Proc. Conf. Nové Město na Moravě, Czechoslovakia, September 1983, 1984, 247-260, J.E. Purkyně University, Brno, (1984) MR0793214
- Sarlet, W., Cantrijn, F., Saunders, D.J., 10.1088/0305-4470/28/11/022, J. Phys. A: Math. Gen., 28, 1995, 3253-3268, (1995) Zbl0858.70013MR1344117DOI10.1088/0305-4470/28/11/022
- Sarlet, W., Saunders, D.J., Cantrijn, F., 10.1088/0305-4470/29/14/042, J. Phys. A: Math. Gen., 29, 1996, 4265-4274, (1996) Zbl0900.70196MR1406933DOI10.1088/0305-4470/29/14/042
- Sarlet, W., Saunders, D.J., Cantrijn, F., 10.1016/j.geomphys.2004.12.006, Journal of Geometry and Physics, 55, 2005, 207-225, (2005) Zbl1093.37026MR2157043DOI10.1016/j.geomphys.2004.12.006
- Swaczyna, M., Several examples of nonholonomic mechanical systems, Comm. Math., 19, 2011, 27-56, (2011) MR2855390
- Swaczyna, M., Volný, P., 10.1016/S0034-4877(14)60039-2, Rep. Math. Phys., 73, 2, 2014, 177-200, (2014) Zbl1308.70017MR3285508DOI10.1016/S0034-4877(14)60039-2
- Udwadia, F.E., 10.1016/S0020-7462(96)00116-3, Int. J. Non-Linear Mech., 31, 1996, 951-958, (1996) Zbl0891.70010DOI10.1016/S0020-7462(96)00116-3
- Udwadia, F.E., Kalaba, R.E., 10.1016/S0020-7462(01)00033-6, Int. J. Non-Linear Mech., 37, 2002, 1079-1090, (2002) MR1897289DOI10.1016/S0020-7462(01)00033-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.