Some integrability theorems for multiple trigonometric series
Mathematica Bohemica (2011)
- Volume: 136, Issue: 3, page 269-286
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topLee, Tuo-Yeong. "Some integrability theorems for multiple trigonometric series." Mathematica Bohemica 136.3 (2011): 269-286. <http://eudml.org/doc/197210>.
@article{Lee2011,
abstract = {Several new integrability theorems are proved for multiple cosine or sine series.},
author = {Lee, Tuo-Yeong},
journal = {Mathematica Bohemica},
keywords = {multiple Fourier series; multiple cosine series; multiple sine series; multiple cosine series; sine series; regular convergence; integrability theorem},
language = {eng},
number = {3},
pages = {269-286},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some integrability theorems for multiple trigonometric series},
url = {http://eudml.org/doc/197210},
volume = {136},
year = {2011},
}
TY - JOUR
AU - Lee, Tuo-Yeong
TI - Some integrability theorems for multiple trigonometric series
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 3
SP - 269
EP - 286
AB - Several new integrability theorems are proved for multiple cosine or sine series.
LA - eng
KW - multiple Fourier series; multiple cosine series; multiple sine series; multiple cosine series; sine series; regular convergence; integrability theorem
UR - http://eudml.org/doc/197210
ER -
References
top- Boas, R. P., Integrability Theorems for Trigonometric Transforms, Springer, Berlin (1967). (1967) Zbl0145.06804MR0219973
- Grafakos, L., Classical Fourier analysis. Second edition, Graduate Texts in Mathematics 249. Springer (2008). (2008) MR2445437
- Hardy, G. H., On the convergence of certain multiple series, Proc. Cambridge Philos. Soc. 19 (1916-1919), 86-95. (1916)
- Lee, Tuo-Yeong, 10.1016/j.jmaa.2007.08.010, J. Math. Anal. Appl. 340 (2008), 53-63. (2008) MR2376137DOI10.1016/j.jmaa.2007.08.010
- Lee, Tuo-Yeong, Some convergence theorems for Lebesgue integrals, Analysis (Munich) 28 (2008), 263-268. (2008) Zbl1156.40007MR2401157
- Lee, Tuo-Yeong, 10.1007/s10587-008-0081-0, Czech. Math. J. 58 (2008), 1221-1231. (2008) Zbl1174.26005MR2471178DOI10.1007/s10587-008-0081-0
- Lee, Tuo-Yeong, 10.1007/s10587-009-0070-y, Czech. Math. J. 59 (2009), 1005-1017. (2009) Zbl1224.26026MR2563573DOI10.1007/s10587-009-0070-y
- Lee, Tuo-Yeong, Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series, (to appear) in Czech Math. J.
- Móricz, F., 10.1007/BF02059384, Anal. Math. 5 (1979), 135-147. (1979) MR0539321DOI10.1007/BF02059384
- Móricz, F., 10.1007/BF01994074, Acta Math. Hungar. 41 (1983), 161-168. (1983) MR0704536DOI10.1007/BF01994074
- Móricz, F., On the , -summability of double orthogonal series, Acta Sci. Math. (Szeged) 48 (1985), 325-338. (1985) MR0810889
- Móricz, F., 10.1090/S0002-9939-1990-1021902-5, Proc. Amer. Math. Soc. 110 (1990), 355-364. (1990) MR1021902DOI10.1090/S0002-9939-1990-1021902-5
- Móricz, F., 10.1016/0022-247X(91)90050-A, J. Math. Anal. Appl. 154 (1991), 452-465. (1991) MR1088644DOI10.1016/0022-247X(91)90050-A
- Zygmund, A., Trigonometric Series. Vol. I, II. Third edition, With a foreword by Robert A. Fefferman. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2002). (2002) MR1963498
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.