Some integrability theorems for multiple trigonometric series

Tuo-Yeong Lee

Mathematica Bohemica (2011)

  • Volume: 136, Issue: 3, page 269-286
  • ISSN: 0862-7959

Abstract

top
Several new integrability theorems are proved for multiple cosine or sine series.

How to cite

top

Lee, Tuo-Yeong. "Some integrability theorems for multiple trigonometric series." Mathematica Bohemica 136.3 (2011): 269-286. <http://eudml.org/doc/197210>.

@article{Lee2011,
abstract = {Several new integrability theorems are proved for multiple cosine or sine series.},
author = {Lee, Tuo-Yeong},
journal = {Mathematica Bohemica},
keywords = {multiple Fourier series; multiple cosine series; multiple sine series; multiple cosine series; sine series; regular convergence; integrability theorem},
language = {eng},
number = {3},
pages = {269-286},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some integrability theorems for multiple trigonometric series},
url = {http://eudml.org/doc/197210},
volume = {136},
year = {2011},
}

TY - JOUR
AU - Lee, Tuo-Yeong
TI - Some integrability theorems for multiple trigonometric series
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 3
SP - 269
EP - 286
AB - Several new integrability theorems are proved for multiple cosine or sine series.
LA - eng
KW - multiple Fourier series; multiple cosine series; multiple sine series; multiple cosine series; sine series; regular convergence; integrability theorem
UR - http://eudml.org/doc/197210
ER -

References

top
  1. Boas, R. P., Integrability Theorems for Trigonometric Transforms, Springer, Berlin (1967). (1967) Zbl0145.06804MR0219973
  2. Grafakos, L., Classical Fourier analysis. Second edition, Graduate Texts in Mathematics 249. Springer (2008). (2008) MR2445437
  3. Hardy, G. H., On the convergence of certain multiple series, Proc. Cambridge Philos. Soc. 19 (1916-1919), 86-95. (1916) 
  4. Lee, Tuo-Yeong, 10.1016/j.jmaa.2007.08.010, J. Math. Anal. Appl. 340 (2008), 53-63. (2008) MR2376137DOI10.1016/j.jmaa.2007.08.010
  5. Lee, Tuo-Yeong, Some convergence theorems for Lebesgue integrals, Analysis (Munich) 28 (2008), 263-268. (2008) Zbl1156.40007MR2401157
  6. Lee, Tuo-Yeong, 10.1007/s10587-008-0081-0, Czech. Math. J. 58 (2008), 1221-1231. (2008) Zbl1174.26005MR2471178DOI10.1007/s10587-008-0081-0
  7. Lee, Tuo-Yeong, 10.1007/s10587-009-0070-y, Czech. Math. J. 59 (2009), 1005-1017. (2009) Zbl1224.26026MR2563573DOI10.1007/s10587-009-0070-y
  8. Lee, Tuo-Yeong, Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series, (to appear) in Czech Math. J. 
  9. Móricz, F., 10.1007/BF02059384, Anal. Math. 5 (1979), 135-147. (1979) MR0539321DOI10.1007/BF02059384
  10. Móricz, F., 10.1007/BF01994074, Acta Math. Hungar. 41 (1983), 161-168. (1983) MR0704536DOI10.1007/BF01994074
  11. Móricz, F., On the | C , α > 1 2 , β > 1 2 | -summability of double orthogonal series, Acta Sci. Math. (Szeged) 48 (1985), 325-338. (1985) MR0810889
  12. Móricz, F., 10.1090/S0002-9939-1990-1021902-5, Proc. Amer. Math. Soc. 110 (1990), 355-364. (1990) MR1021902DOI10.1090/S0002-9939-1990-1021902-5
  13. Móricz, F., 10.1016/0022-247X(91)90050-A, J. Math. Anal. Appl. 154 (1991), 452-465. (1991) MR1088644DOI10.1016/0022-247X(91)90050-A
  14. Zygmund, A., Trigonometric Series. Vol. I, II. Third edition, With a foreword by Robert A. Fefferman. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2002). (2002) MR1963498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.