Bounded linear functionals on the space of Henstock-Kurzweil integrable functions

Tuo-Yeong Lee

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 4, page 1005-1017
  • ISSN: 0011-4642

Abstract

top
Applying a simple integration by parts formula for the Henstock-Kurzweil integral, we obtain a simple proof of the Riesz representation theorem for the space of Henstock-Kurzweil integrable functions. Consequently, we give sufficient conditions for the existence and equality of two iterated Henstock-Kurzweil integrals.

How to cite

top

Lee, Tuo-Yeong. "Bounded linear functionals on the space of Henstock-Kurzweil integrable functions." Czechoslovak Mathematical Journal 59.4 (2009): 1005-1017. <http://eudml.org/doc/37973>.

@article{Lee2009,
abstract = {Applying a simple integration by parts formula for the Henstock-Kurzweil integral, we obtain a simple proof of the Riesz representation theorem for the space of Henstock-Kurzweil integrable functions. Consequently, we give sufficient conditions for the existence and equality of two iterated Henstock-Kurzweil integrals.},
author = {Lee, Tuo-Yeong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Henstock-Kurzweil integral; bounded linear functional; bounded variation; Henstock-Kurzweil integral; bounded linear functional; bounded variation},
language = {eng},
number = {4},
pages = {1005-1017},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bounded linear functionals on the space of Henstock-Kurzweil integrable functions},
url = {http://eudml.org/doc/37973},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Lee, Tuo-Yeong
TI - Bounded linear functionals on the space of Henstock-Kurzweil integrable functions
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 1005
EP - 1017
AB - Applying a simple integration by parts formula for the Henstock-Kurzweil integral, we obtain a simple proof of the Riesz representation theorem for the space of Henstock-Kurzweil integrable functions. Consequently, we give sufficient conditions for the existence and equality of two iterated Henstock-Kurzweil integrals.
LA - eng
KW - Henstock-Kurzweil integral; bounded linear functional; bounded variation; Henstock-Kurzweil integral; bounded linear functional; bounded variation
UR - http://eudml.org/doc/37973
ER -

References

top
  1. Alexiewicz, A., 10.4064/cm-1-4-289-293, Colloq. Math. 1 (1948), 289-293. (1948) Zbl0037.32302MR0030120DOI10.4064/cm-1-4-289-293
  2. Gordon, R. A., 10.1090/gsm/004/09, Graduate Studies in Mathematics Vol. 4, AMS (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004/09
  3. Hildebrandt, T. H., Schoenberg, I. J., On linear functional operations and the moment problem for a finite interval in one or several dimensions, The Annals of Mathematics (2) 34 317-328. Zbl0006.40204MR1503109
  4. Kreyszig, Erwin, Introductory Functional Analysis with Applications, John Wiley & Sons, New York-London-Sydney (1978). (1978) Zbl0368.46014MR0467220
  5. Kurzweil, J., On multiplication of Perron integrable functions, Czech. Math. J 23 (1973), 542-566. (1973) Zbl0269.26007MR0335705
  6. Peng-Yee, Lee, Lanzhou Lectures on Henstock Integration, World Scientific (1989). (1989) MR1050957
  7. Peng-Yee, Lee, Výborný, R., The integral, An Easy Approach after Kurzweil and Henstock, Australian Mathematical Society Lecture Series 14 (Cambridge University Press, 2000). MR1756319
  8. Tuo-Yeong, Lee, Tuan-Seng, Chew, Peng-Yee, Lee, 10.1017/S0004972700021857, Bull. Austral. Math Soc. 54 (1996), 441-449. (1996) MR1419607DOI10.1017/S0004972700021857
  9. Tuo-Yeong, Lee, Tuan-Seng, Chew, Peng-Yee, Lee, On Henstock integrability in Euclidean spaces, Real Anal. Exchange 22 (1996/97), 382-389. (1996) MR1433623
  10. Tuo-Yeong, Lee, Multipliers for some non-absolute integrals in the Euclidean spaces, Real Anal. Exchange 24 (1998/99), 149-160. (1998) MR1691742
  11. Tuo-Yeong, Lee, A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space, Proc. London Math. Soc. 87 (2003), 677-700. (2003) MR2005879
  12. Tuo-Yeong, Lee, 10.1007/s10587-004-6415-7, Czech. Math. J. 54 (2004), 657-674. (2004) MR2086723DOI10.1007/s10587-004-6415-7
  13. Tuo-Yeong, Lee, 10.1016/j.jmaa.2004.05.033, J. Math. Anal. Appl. 298 (2004), 677-692. (2004) MR2086983DOI10.1016/j.jmaa.2004.05.033
  14. Tuo-Yeong, Lee, 10.1017/S030500410500839X, Math. Proc. Cambridge Philos. Soc. 138 (2005), 487-492. (2005) MR2138575DOI10.1017/S030500410500839X
  15. Tuo-Yeong, Lee, 10.1016/j.jmaa.2005.10.045, J. Math. Anal. Appl. 323 (2006), 741-745. (2006) MR2262241DOI10.1016/j.jmaa.2005.10.045
  16. Tuo-Yeong, Lee, A multidimensional integration by parts formula for the Henstock-Kurzweil integral, Math. Bohem. 133 (2008), 63-74. (2008) MR2400151
  17. Liu, G. Q., The dual of the Henstock-Kurzweil space, Real Anal. Exchange 22 (1996/97), 105-121. (1996) Zbl0879.26046MR1433600
  18. Mikusiński, Piotr, Ostaszewski, K., The space of Henstock integrable functions II, In New integrals, (P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney and W. F. Pfeffer, Editors), Lecture Notes in Math. 1419 (Springer-Verlag, Berlin, Heideberg, New York 1990) 136-149. MR1051926
  19. Ostaszewski, K. M., 10.1155/S0161171288000043, Internat. J. Math. and Math. Sci. 11 (1988), 15-22. (1988) Zbl0662.26003MR0918213DOI10.1155/S0161171288000043
  20. Sargent, W. L. C., 10.1112/jlms/s1-23.1.28, J. London Math. Soc. 23 (1948), 28-34. (1948) Zbl0031.29201MR0026113DOI10.1112/jlms/s1-23.1.28
  21. Sargent, W. L. C., 10.1093/qmath/1.1.288, Quart. J. Math., Oxford Ser. 1 (1950), 288-298. (1950) Zbl0039.11801MR0039919DOI10.1093/qmath/1.1.288

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.