Bounded linear functionals on the space of Henstock-Kurzweil integrable functions
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 4, page 1005-1017
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLee, Tuo-Yeong. "Bounded linear functionals on the space of Henstock-Kurzweil integrable functions." Czechoslovak Mathematical Journal 59.4 (2009): 1005-1017. <http://eudml.org/doc/37973>.
@article{Lee2009,
abstract = {Applying a simple integration by parts formula for the Henstock-Kurzweil integral, we obtain a simple proof of the Riesz representation theorem for the space of Henstock-Kurzweil integrable functions. Consequently, we give sufficient conditions for the existence and equality of two iterated Henstock-Kurzweil integrals.},
author = {Lee, Tuo-Yeong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Henstock-Kurzweil integral; bounded linear functional; bounded variation; Henstock-Kurzweil integral; bounded linear functional; bounded variation},
language = {eng},
number = {4},
pages = {1005-1017},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bounded linear functionals on the space of Henstock-Kurzweil integrable functions},
url = {http://eudml.org/doc/37973},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Lee, Tuo-Yeong
TI - Bounded linear functionals on the space of Henstock-Kurzweil integrable functions
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 1005
EP - 1017
AB - Applying a simple integration by parts formula for the Henstock-Kurzweil integral, we obtain a simple proof of the Riesz representation theorem for the space of Henstock-Kurzweil integrable functions. Consequently, we give sufficient conditions for the existence and equality of two iterated Henstock-Kurzweil integrals.
LA - eng
KW - Henstock-Kurzweil integral; bounded linear functional; bounded variation; Henstock-Kurzweil integral; bounded linear functional; bounded variation
UR - http://eudml.org/doc/37973
ER -
References
top- Alexiewicz, A., 10.4064/cm-1-4-289-293, Colloq. Math. 1 (1948), 289-293. (1948) Zbl0037.32302MR0030120DOI10.4064/cm-1-4-289-293
- Gordon, R. A., 10.1090/gsm/004/09, Graduate Studies in Mathematics Vol. 4, AMS (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004/09
- Hildebrandt, T. H., Schoenberg, I. J., On linear functional operations and the moment problem for a finite interval in one or several dimensions, The Annals of Mathematics (2) 34 317-328. Zbl0006.40204MR1503109
- Kreyszig, Erwin, Introductory Functional Analysis with Applications, John Wiley & Sons, New York-London-Sydney (1978). (1978) Zbl0368.46014MR0467220
- Kurzweil, J., On multiplication of Perron integrable functions, Czech. Math. J 23 (1973), 542-566. (1973) Zbl0269.26007MR0335705
- Peng-Yee, Lee, Lanzhou Lectures on Henstock Integration, World Scientific (1989). (1989) MR1050957
- Peng-Yee, Lee, Výborný, R., The integral, An Easy Approach after Kurzweil and Henstock, Australian Mathematical Society Lecture Series 14 (Cambridge University Press, 2000). MR1756319
- Tuo-Yeong, Lee, Tuan-Seng, Chew, Peng-Yee, Lee, 10.1017/S0004972700021857, Bull. Austral. Math Soc. 54 (1996), 441-449. (1996) MR1419607DOI10.1017/S0004972700021857
- Tuo-Yeong, Lee, Tuan-Seng, Chew, Peng-Yee, Lee, On Henstock integrability in Euclidean spaces, Real Anal. Exchange 22 (1996/97), 382-389. (1996) MR1433623
- Tuo-Yeong, Lee, Multipliers for some non-absolute integrals in the Euclidean spaces, Real Anal. Exchange 24 (1998/99), 149-160. (1998) MR1691742
- Tuo-Yeong, Lee, A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space, Proc. London Math. Soc. 87 (2003), 677-700. (2003) MR2005879
- Tuo-Yeong, Lee, 10.1007/s10587-004-6415-7, Czech. Math. J. 54 (2004), 657-674. (2004) MR2086723DOI10.1007/s10587-004-6415-7
- Tuo-Yeong, Lee, 10.1016/j.jmaa.2004.05.033, J. Math. Anal. Appl. 298 (2004), 677-692. (2004) MR2086983DOI10.1016/j.jmaa.2004.05.033
- Tuo-Yeong, Lee, 10.1017/S030500410500839X, Math. Proc. Cambridge Philos. Soc. 138 (2005), 487-492. (2005) MR2138575DOI10.1017/S030500410500839X
- Tuo-Yeong, Lee, 10.1016/j.jmaa.2005.10.045, J. Math. Anal. Appl. 323 (2006), 741-745. (2006) MR2262241DOI10.1016/j.jmaa.2005.10.045
- Tuo-Yeong, Lee, A multidimensional integration by parts formula for the Henstock-Kurzweil integral, Math. Bohem. 133 (2008), 63-74. (2008) MR2400151
- Liu, G. Q., The dual of the Henstock-Kurzweil space, Real Anal. Exchange 22 (1996/97), 105-121. (1996) Zbl0879.26046MR1433600
- Mikusiński, Piotr, Ostaszewski, K., The space of Henstock integrable functions II, In New integrals, (P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney and W. F. Pfeffer, Editors), Lecture Notes in Math. 1419 (Springer-Verlag, Berlin, Heideberg, New York 1990) 136-149. MR1051926
- Ostaszewski, K. M., 10.1155/S0161171288000043, Internat. J. Math. and Math. Sci. 11 (1988), 15-22. (1988) Zbl0662.26003MR0918213DOI10.1155/S0161171288000043
- Sargent, W. L. C., 10.1112/jlms/s1-23.1.28, J. London Math. Soc. 23 (1948), 28-34. (1948) Zbl0031.29201MR0026113DOI10.1112/jlms/s1-23.1.28
- Sargent, W. L. C., 10.1093/qmath/1.1.288, Quart. J. Math., Oxford Ser. 1 (1950), 288-298. (1950) Zbl0039.11801MR0039919DOI10.1093/qmath/1.1.288
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.