On the asymptotic behavior at infinity of solutions to quasi-linear differential equations
Mathematica Bohemica (2010)
- Volume: 135, Issue: 4, page 373-382
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAstashova, Irina. "On the asymptotic behavior at infinity of solutions to quasi-linear differential equations." Mathematica Bohemica 135.4 (2010): 373-382. <http://eudml.org/doc/197233>.
@article{Astashova2010,
abstract = {Sufficient conditions are formulated for existence of non-oscillatory solutions to the equation \[y^\{(n)\}+\sum \_\{j=0\}^\{n-1\}a\_j(x)y^\{(j)\}+p(x)|y|^k \mathop \{\rm sgn\} y =0\]
with $ n\ge 1$, real (not necessarily natural) $k>1$, and continuous functions $p(x)$ and $a_j(x)$ defined in a neighborhood of $+\infty $. For this equation with positive potential $p(x)$ a criterion is formulated for existence of non-oscillatory solutions with non-zero limit at infinity. In the case of even order, a criterion is obtained for all solutions of this equation at infinity to be oscillatory. Sufficient conditions are obtained for existence of solution to this equation which is equivalent to a polynomial.},
author = {Astashova, Irina},
journal = {Mathematica Bohemica},
keywords = {quasi-linear ordinary differential equation of higher order; existence of non-oscillatory solution; oscillatory solution; quasi-linear ordinary differential equation; higher order; existence; non-oscillatory solution; oscillatory solution},
language = {eng},
number = {4},
pages = {373-382},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the asymptotic behavior at infinity of solutions to quasi-linear differential equations},
url = {http://eudml.org/doc/197233},
volume = {135},
year = {2010},
}
TY - JOUR
AU - Astashova, Irina
TI - On the asymptotic behavior at infinity of solutions to quasi-linear differential equations
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 4
SP - 373
EP - 382
AB - Sufficient conditions are formulated for existence of non-oscillatory solutions to the equation \[y^{(n)}+\sum _{j=0}^{n-1}a_j(x)y^{(j)}+p(x)|y|^k \mathop {\rm sgn} y =0\]
with $ n\ge 1$, real (not necessarily natural) $k>1$, and continuous functions $p(x)$ and $a_j(x)$ defined in a neighborhood of $+\infty $. For this equation with positive potential $p(x)$ a criterion is formulated for existence of non-oscillatory solutions with non-zero limit at infinity. In the case of even order, a criterion is obtained for all solutions of this equation at infinity to be oscillatory. Sufficient conditions are obtained for existence of solution to this equation which is equivalent to a polynomial.
LA - eng
KW - quasi-linear ordinary differential equation of higher order; existence of non-oscillatory solution; oscillatory solution; quasi-linear ordinary differential equation; higher order; existence; non-oscillatory solution; oscillatory solution
UR - http://eudml.org/doc/197233
ER -
References
top- Atkinson, F. V., 10.2140/pjm.1955.5.643, Pacif. J. Math. 5 (1955), 643-647. (1955) MR0072316DOI10.2140/pjm.1955.5.643
- Astashova, I. V., 10.1007/PL00021970, J. Math. Sci., New York 126 (2005), 1361-1391. (2005) Zbl1093.37005MR2157611DOI10.1007/PL00021970
- Astashova, I. V., 10.1007/s10958-006-0133-7, J. Math. Sci., New York 135 (2006), 2616-2624. (2006) MR2271904DOI10.1007/s10958-006-0133-7
- Astashova, I. V., On existence of non-oscillatory solutions to quasi-linear differential equations, Georgian Math. J. 14 (2007), 223-238. (2007) MR2341274
- Belohorec, S. A., A criterion for oscillation and nonoscillation, Acta F. R. N. Univ. Comen. Math. 20 (1969), 75-79. (1969) Zbl0225.34019MR0274855
- Kartsatos, A. G., 10.2140/pjm.1976.67.477, Pacific J. Math. 67 (1976), 477-488. (1976) MR0440122DOI10.2140/pjm.1976.67.477
- Kiguradze, I. T., On conditions for oscillation of solutions of the equation , Čas. Pěst. Mat. 87 (1962), 492-495 Russian. (1962) Zbl0138.33504MR0181800
- Kiguradze, I. T., On the oscillation of solution of the equation , Mat. Sbornik 65 (1964), 172-187 Russian. (1964) Zbl0135.14302MR0173060
- Kiguradze, I. T., Chanturiya, T. A., Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluver Academic Publishers, Dordrecht (1993). (1993) Zbl0782.34002MR1220223
- Kiguradze, I. T., On the oscillation criteria for one class of ordinary differential equations, Diff. Uravnenija 28 (1992), 207-219 Russian. (1992)
- Kondratiev, V. A., Samovol, V. S., On some asymptotic properties of solutions for the Emden-Fowler type equations, Diff. Uravnenija 17 (1981), 749-750 Russian. (1981)
- Kusano, T., Naito, M., 10.4153/CJM-1976-081-0, Canad. J. Math. 28 (1976), 840-852. (1976) Zbl0432.34022MR0430415DOI10.4153/CJM-1976-081-0
- Levin, A. Yu., Nonoscillation of solutions of the equation , Usp. Mat. Nauk. 24 (1969), 43-96 Russian. (1969) MR0254328
- Lovelady, D. L., 10.1016/0022-0396(75)90026-1, J. Diff. Equations 19 (1975), 167-175. (1975) Zbl0333.34030MR0382781DOI10.1016/0022-0396(75)90026-1
- Lovelady, D. L., An oscillation criterion for a fourth-order integrally superlinear differential equation, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. 8 (1975), 531-536. (1975) Zbl0348.34026MR0422766
- Masci, J. W., Wong, J. S. W., 10.2140/pjm.1968.24.111, Pacif. J. Math. 24 (1968), 111-117. (1968) MR0224908DOI10.2140/pjm.1968.24.111
- Pólya, G., 10.2307/1988819, Trans. Amer. Math. Soc. 24 (1924), 312-324. (1924) MR1501228DOI10.2307/1988819
- Sobol, I. M., On asymptotical behavior of solutions to linear differential equations, Doklady Akad. Nauk SSSR 61 (1948), 219-222 Russian. (1948) MR0025650
- Taylor, W. E. Jr., 10.1155/S0161171283000502, Internat. J. Math. 6 (1983), 551-557. (1983) Zbl0539.34021MR0712574DOI10.1155/S0161171283000502
- Vallée-Poussin, Ch. I. de la, Sur l’équation différentielle linéaire du second ordre. Détermination d’une intégrale par deux valeurs assignées. Extension aux équations d’ordre , J. Math. Pures Appl. 9 (1929), 125-144. (1929)
- Waltman, P., 10.1007/BF01300681, Monatsh. Math. 67 (1963), 50-54. (1963) Zbl0116.29401MR0147700DOI10.1007/BF01300681
- Wong, J. S. W., On second-order nonlinear oscillation, Funkcialaj Ekvacioj 11 (1968), 207-234. (1968) Zbl0157.14802MR0245915
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.