On the asymptotic behavior at infinity of solutions to quasi-linear differential equations

Irina Astashova

Mathematica Bohemica (2010)

  • Volume: 135, Issue: 4, page 373-382
  • ISSN: 0862-7959

Abstract

top
Sufficient conditions are formulated for existence of non-oscillatory solutions to the equation y ( n ) + j = 0 n - 1 a j ( x ) y ( j ) + p ( x ) | y | k sgn y = 0 with n 1 , real (not necessarily natural) k > 1 , and continuous functions p ( x ) and a j ( x ) defined in a neighborhood of + . For this equation with positive potential p ( x ) a criterion is formulated for existence of non-oscillatory solutions with non-zero limit at infinity. In the case of even order, a criterion is obtained for all solutions of this equation at infinity to be oscillatory. Sufficient conditions are obtained for existence of solution to this equation which is equivalent to a polynomial.

How to cite

top

Astashova, Irina. "On the asymptotic behavior at infinity of solutions to quasi-linear differential equations." Mathematica Bohemica 135.4 (2010): 373-382. <http://eudml.org/doc/197233>.

@article{Astashova2010,
abstract = {Sufficient conditions are formulated for existence of non-oscillatory solutions to the equation \[y^\{(n)\}+\sum \_\{j=0\}^\{n-1\}a\_j(x)y^\{(j)\}+p(x)|y|^k \mathop \{\rm sgn\} y =0\] with $ n\ge 1$, real (not necessarily natural) $k>1$, and continuous functions $p(x)$ and $a_j(x)$ defined in a neighborhood of $+\infty $. For this equation with positive potential $p(x)$ a criterion is formulated for existence of non-oscillatory solutions with non-zero limit at infinity. In the case of even order, a criterion is obtained for all solutions of this equation at infinity to be oscillatory. Sufficient conditions are obtained for existence of solution to this equation which is equivalent to a polynomial.},
author = {Astashova, Irina},
journal = {Mathematica Bohemica},
keywords = {quasi-linear ordinary differential equation of higher order; existence of non-oscillatory solution; oscillatory solution; quasi-linear ordinary differential equation; higher order; existence; non-oscillatory solution; oscillatory solution},
language = {eng},
number = {4},
pages = {373-382},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the asymptotic behavior at infinity of solutions to quasi-linear differential equations},
url = {http://eudml.org/doc/197233},
volume = {135},
year = {2010},
}

TY - JOUR
AU - Astashova, Irina
TI - On the asymptotic behavior at infinity of solutions to quasi-linear differential equations
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 4
SP - 373
EP - 382
AB - Sufficient conditions are formulated for existence of non-oscillatory solutions to the equation \[y^{(n)}+\sum _{j=0}^{n-1}a_j(x)y^{(j)}+p(x)|y|^k \mathop {\rm sgn} y =0\] with $ n\ge 1$, real (not necessarily natural) $k>1$, and continuous functions $p(x)$ and $a_j(x)$ defined in a neighborhood of $+\infty $. For this equation with positive potential $p(x)$ a criterion is formulated for existence of non-oscillatory solutions with non-zero limit at infinity. In the case of even order, a criterion is obtained for all solutions of this equation at infinity to be oscillatory. Sufficient conditions are obtained for existence of solution to this equation which is equivalent to a polynomial.
LA - eng
KW - quasi-linear ordinary differential equation of higher order; existence of non-oscillatory solution; oscillatory solution; quasi-linear ordinary differential equation; higher order; existence; non-oscillatory solution; oscillatory solution
UR - http://eudml.org/doc/197233
ER -

References

top
  1. Atkinson, F. V., 10.2140/pjm.1955.5.643, Pacif. J. Math. 5 (1955), 643-647. (1955) MR0072316DOI10.2140/pjm.1955.5.643
  2. Astashova, I. V., 10.1007/PL00021970, J. Math. Sci., New York 126 (2005), 1361-1391. (2005) Zbl1093.37005MR2157611DOI10.1007/PL00021970
  3. Astashova, I. V., 10.1007/s10958-006-0133-7, J. Math. Sci., New York 135 (2006), 2616-2624. (2006) MR2271904DOI10.1007/s10958-006-0133-7
  4. Astashova, I. V., On existence of non-oscillatory solutions to quasi-linear differential equations, Georgian Math. J. 14 (2007), 223-238. (2007) MR2341274
  5. Belohorec, S. A., A criterion for oscillation and nonoscillation, Acta F. R. N. Univ. Comen. Math. 20 (1969), 75-79. (1969) Zbl0225.34019MR0274855
  6. Kartsatos, A. G., 10.2140/pjm.1976.67.477, Pacific J. Math. 67 (1976), 477-488. (1976) MR0440122DOI10.2140/pjm.1976.67.477
  7. Kiguradze, I. T., On conditions for oscillation of solutions of the equation u ' ' + a ( t ) | u | n s g n u = 0 , Čas. Pěst. Mat. 87 (1962), 492-495 Russian. (1962) Zbl0138.33504MR0181800
  8. Kiguradze, I. T., On the oscillation of solution of the equation d m / d t m + a ( t ) | u | n s i g n u = 0 , Mat. Sbornik 65 (1964), 172-187 Russian. (1964) Zbl0135.14302MR0173060
  9. Kiguradze, I. T., Chanturiya, T. A., Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluver Academic Publishers, Dordrecht (1993). (1993) Zbl0782.34002MR1220223
  10. Kiguradze, I. T., On the oscillation criteria for one class of ordinary differential equations, Diff. Uravnenija 28 (1992), 207-219 Russian. (1992) 
  11. Kondratiev, V. A., Samovol, V. S., On some asymptotic properties of solutions for the Emden-Fowler type equations, Diff. Uravnenija 17 (1981), 749-750 Russian. (1981) 
  12. Kusano, T., Naito, M., 10.4153/CJM-1976-081-0, Canad. J. Math. 28 (1976), 840-852. (1976) Zbl0432.34022MR0430415DOI10.4153/CJM-1976-081-0
  13. Levin, A. Yu., Nonoscillation of solutions of the equation x ( n ) + p 1 ( t ) x ( n - 1 ) + + p n ( t ) x = 0 , Usp. Mat. Nauk. 24 (1969), 43-96 Russian. (1969) MR0254328
  14. Lovelady, D. L., 10.1016/0022-0396(75)90026-1, J. Diff. Equations 19 (1975), 167-175. (1975) Zbl0333.34030MR0382781DOI10.1016/0022-0396(75)90026-1
  15. Lovelady, D. L., An oscillation criterion for a fourth-order integrally superlinear differential equation, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. 8 (1975), 531-536. (1975) Zbl0348.34026MR0422766
  16. Masci, J. W., Wong, J. S. W., 10.2140/pjm.1968.24.111, Pacif. J. Math. 24 (1968), 111-117. (1968) MR0224908DOI10.2140/pjm.1968.24.111
  17. Pólya, G., 10.2307/1988819, Trans. Amer. Math. Soc. 24 (1924), 312-324. (1924) MR1501228DOI10.2307/1988819
  18. Sobol, I. M., On asymptotical behavior of solutions to linear differential equations, Doklady Akad. Nauk SSSR 61 (1948), 219-222 Russian. (1948) MR0025650
  19. Taylor, W. E. Jr., 10.1155/S0161171283000502, Internat. J. Math. 6 (1983), 551-557. (1983) Zbl0539.34021MR0712574DOI10.1155/S0161171283000502
  20. Vallée-Poussin, Ch. I. de la, Sur l’équation différentielle linéaire du second ordre. Détermination d’une intégrale par deux valeurs assignées. Extension aux équations d’ordre n , J. Math. Pures Appl. 9 (1929), 125-144. (1929) 
  21. Waltman, P., 10.1007/BF01300681, Monatsh. Math. 67 (1963), 50-54. (1963) Zbl0116.29401MR0147700DOI10.1007/BF01300681
  22. Wong, J. S. W., On second-order nonlinear oscillation, Funkcialaj Ekvacioj 11 (1968), 207-234. (1968) Zbl0157.14802MR0245915

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.