On the controllability and stabilization of the linearized Benjamin-Ono equation
Felipe Linares; Jaime H. Ortega
ESAIM: Control, Optimisation and Calculus of Variations (2005)
- Volume: 11, Issue: 2, page 204-218
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Abdelouhab, J.L. Bona, M. Felland and J.-C. Saut, Nonlocal models for nonlinear, dispersive waves. Physica D 40 (1989) 360–392. Zbl0699.35227
- [2] M.J. Ablowitz and A.S. Fokas, The inverse scattering transform for the Benjamin-Ono equation-a pivot to multidimensional problems. Stud. Appl. Math. 68 (1983) 1–10. Zbl0505.76031
- [3] T.B. Benjamin, Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29 (1967) 559–592. Zbl0147.46502
- [4] J. Bona and R. Winther, The Korteweg-de Vries equation, posed in a quarter-plane. SIAM J. Math. Anal. 14 (1983) 1056–1106. Zbl0529.35069
- [5] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Geom. Funct. Anal. 3 (1993) 107–156, 209–262. Zbl0787.35098
- [6] K.M. Case, Benjamin-Ono related equations and their solutions. Proc. Nat. Acad. Sci. USA 76 (1979) 1–3. Zbl0395.76020
- [7] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equation. Oxford Sci. Publ. (1998). Zbl0926.35049MR1691574
- [8] J. Colliander and C.E. Kenig, The generalized Korteweg-de Vries equation on the half line. Comm. Partial Differential Equations 27 (2002) 2187–2266. Zbl1041.35064
- [9] K.D. Danov and M.S. Ruderman, Nonlinear waves on shallow water in the presence of a horizontal magnetic field. Fluid Dynamics 18 (1983) 751–756. Zbl0557.76029
- [10] A.E. Ingham, A further note on trigonometrical inequalities. Proc. Cambridge Philos. Soc. 46 (1950) 535–537. Zbl0037.32901
- [11] R. Iorio, On the Cauchy problem for the Benjamin-Ono equation. Comm. Partial Differentiel Equations 11 (1986) 1031–1081. Zbl0608.35030
- [12] Y. Ishimori, Solitons in a one-dimensional Lennard/Mhy Jones lattice. Progr. Theoret. Phys. 68 (1982) 402–410. Zbl1074.82512
- [13] C.E. Kenig and K. Koenig, On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations. Math. Res. Lett. 10 (2003) 879–895. Zbl1044.35072
- [14] C.E. Kenig, G. Ponce and L. Vega, A bilinear estimate with application to the KdV equation. J. Amer. Math Soc. 9 (1996) 573–603. Zbl0848.35114
- [15] H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in . Int. Math. Res. Not. 26 (2003) 1449–1464. Zbl1039.35106
- [16] Y. Matsuno and D.J. Kaup, Initial value problem of the linearized Benjamin-Ono equation and its applications. J. Math. Phys. 38 (1997) 5198–5224. Zbl0891.35141
- [17] S. Micu, On the controllability of the linearized Benjamin-Bona-Mahony equation. SIAM J. Control Optim. 39 (2001) 1677–1696. Zbl1007.93035
- [18] H. Ono, Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39 (1975) 1082–1091. Zbl1334.76027
- [19] A. Pazy. Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, Appl. Math. Sci. 44 (1983). Zbl0516.47023MR710486
- [20] G. Perla-Menzala, F. Vasconcellos and E. Zuazua. Stabilization of the Korteweg-de Vries equation with localized damping. Quart. Appl. Math. 60 (2002) 111–129. Zbl1039.35107
- [21] G. Ponce, On the global well-posedness of the Benjamin-Ono equation. Diff. Integral Equations 4 (1991) 527–542. Zbl0732.35038
- [22] L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33–55. Zbl0873.93008
- [23] D.L. Russell and B.-Y. Zhang, Controllability and stabilizability of the third order linear dispersion equation on a periodic domain. SIAM J. Cont. Optim. 31 (1993) 659–676. Zbl0771.93073
- [24] D.L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 348 (1996) 3643–3672. Zbl0862.93035
- [25] T. Tao, Global well-posedness of the Benjamin-Ono equation in , preprint (2003). Zbl1055.35104MR2052470