A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 35, Issue: 2, page 355-387
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topOhlberger, Mario. "A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations." ESAIM: Mathematical Modelling and Numerical Analysis 35.2 (2010): 355-387. <http://eudml.org/doc/197390>.
@article{Ohlberger2010,
abstract = {
This paper is devoted to the study of a posteriori
error estimates for the scalar nonlinear convection-diffusion-reaction equation
$c_t + \nabla \cdot ( \{\bf u\}f(c)) - \nabla \cdot (D \nabla c) + \lambda c = 0$.
The estimates for the error between the exact solution and an upwind finite
volume approximation to the solution are derived in the L1-norm,
independent of the diffusion parameter D.
The resulting a posteriori error estimate is used to define an grid adaptive solution
algorithm for the finite volume scheme. Finally numerical experiments underline
the applicability of the theoretical results.
},
author = {Ohlberger, Mario},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {A posteriori error estimates; convection diffusion reaction equation;
finite volume schemes; adaptive methods; unstructured grids.; a posteriori error estimates; finite volume schemes; unstructured grids; numerical experiments},
language = {eng},
month = {3},
number = {2},
pages = {355-387},
publisher = {EDP Sciences},
title = {A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations},
url = {http://eudml.org/doc/197390},
volume = {35},
year = {2010},
}
TY - JOUR
AU - Ohlberger, Mario
TI - A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 2
SP - 355
EP - 387
AB -
This paper is devoted to the study of a posteriori
error estimates for the scalar nonlinear convection-diffusion-reaction equation
$c_t + \nabla \cdot ( {\bf u}f(c)) - \nabla \cdot (D \nabla c) + \lambda c = 0$.
The estimates for the error between the exact solution and an upwind finite
volume approximation to the solution are derived in the L1-norm,
independent of the diffusion parameter D.
The resulting a posteriori error estimate is used to define an grid adaptive solution
algorithm for the finite volume scheme. Finally numerical experiments underline
the applicability of the theoretical results.
LA - eng
KW - A posteriori error estimates; convection diffusion reaction equation;
finite volume schemes; adaptive methods; unstructured grids.; a posteriori error estimates; finite volume schemes; unstructured grids; numerical experiments
UR - http://eudml.org/doc/197390
ER -
References
top- L. Angermann, An introduction to finite volume methods for linear elliptic equations of second order. Preprint 164, Institut für Angewandte Mathematik, Universität Erlangen (1995).
- Lutz Angermann, A finite element method for the numerical solution of convection-dominated anisotropic diffusion equations. Numer. Math.85 (2000) 175-195.
- P. Angot, V. DolejšÍ, M. Feistauer and J. Felcman, Analysis of a combined barycentric finite volume - finite element method for nonlinear convection diffusion problems. Appl. Math., Praha43 (1998) 263-311.
- I. Babuska and W.C. Rheinboldt, Error estimators for adaptive finite element computations. SIAM J. Numer. Anal.15 (1978) 736-754.
- E. Bänsch, Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg.3 (1991) 181-191.
- R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math.4 (1996) 237-264.
- F. Bouchut and B. Perthame, Kruzkov's estimates for scalar conservation laws revisited. Trans. Amer. Math. Soc.350 (1998) 2847-2870.
- J. Carrillo, Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal.147 (1999) 269-361.
- C. Chainais-Hillairet, Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimates. ESAIM: M2AN33 (1999) 129-156.
- S. Champier, Error estimates for the approximate solution of a nonlinear hyperbolic equation with source term given by finite volume scheme. Preprint, UMR 5585, Saint-Etienne University (1998).
- G. Chavent and J. Jaffre, Mathematical models and finite elements for reservoir simulation. Elsevier, New York (1986).
- B. Cockburn, F. Coquel and P.G. Lefloch, An error estimate for finite volume methods for multidimensional conservation laws. Math. Comput.63 (1994) 77-103.
- B. Cockburn and H. Gau, A posteriori error estimates for general numerical methods for scalar conservation laws. Comput. Appl. Math.14 (1995) 37-47.
- B. Cockburn and P.A. Gremaud, A priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach. Math. Comput.65 (1996) 533-573.
- B. Cockburn and G. Gripenberg, Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations. J. Differential Equations151 (1999) 231-251.
- W. Dörfler, Uniformly convergent finite-element methods for singularly perturbed convection-diffusion equations. Habilitationsschrift, Mathematische Fakultät, Freiburg (1998).
- K. Eriksson and C. Johnson, Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems. Math. Comput.60 (1993) 167-188.
- K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. II: Optimal error estimates in L∞L2 and L∞L∞. SIAM J. Numer. Anal.32 (1995) 706-740.
- K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. IV: Nonlinear Problems. SIAM J. Numer. Anal.32 (1995) 1729-1749.
- S. Evje, K.H. Karlsen and N.H. Risebro, A continuous dependence result for nonlinear degenerate parabolic equations with spatial dependent flux function. Preprint, Department of Mathematics, Bergen University (2000).
- R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solution of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal.18 (1998) 563-594.
- R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Preprint LATP 00-20, CMI, Provence University, Marseille (2000).
- P. Frolkovic, Maximum principle and local mass balance for numerical solutions of transport equations coupled with variable density flow. Acta Math. Univ. Comenian.67 (1998) 137-157.
- J. Fuhrmann and H. Langmach, Stability and existence of solutions of time-implicit finite volume schemes for viscous nonlinear conservation laws. Preprint 437, Weierstraß-Institut, Berlin (1998).
- R. Helmig, Multiphase flow and transport processes in the subsurface: A contribution to the modeling of hydrosystems. Springer, Berlin, Heidelberg (1997).
- R. Herbin, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods Partial Differential Equation11 (1995) 165-173.
- P. Houston and E. Süli, Adaptive lagrange-galerkin methods for unsteady convection-dominated diffusion problems. Report 95/24, Numerical Analysis Group, Oxford University Computing Laboratory (1995).
- J. Jaffre, Décentrage et élements finis mixtes pour les équations de diffusion-convection. Calcolo21 (1984) 171-197.
- V. John, J.M. Maubach and L. Tobiska, Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems. Numer. Math.78 (1997) 165-188.
- C. Johnson, Finite element methods for convection-diffusion problems, in Proc. 5th Int. Symp. (Versailles, 1981), Computing methods in applied sciences and engineering V (1982) 311-323.
- K.H. Karlsen and N.H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Preprint 143, Department of Mathematics, Bergen University (2000).
- D. Kröner, Numerical schemes for conservation laws. Teubner, Stuttgart (1997).
- D. Kröner and M. Ohlberger, A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions. Math. Comput.69 (2000) 25-39.
- D. Kröner and M. Rokyta, A priori error estimates for upwind finite volume schemes in several space dimensions. Preprint 37, Math. Fakultät, Freiburg (1996).
- S.N. Kruzkov, First order quasilinear equations in several independent variables. Math. USSR Sbornik10 (1970) 217-243.
- N.N. Kuznetsov, Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR, Comput. Math. Math. Phys.16 (1976) 159-193.
- J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and measure-valued solutions to evolutionary PDEs, in Applied Mathematics and Mathematical Computation13, Chapman and Hall, London, Weinheim, New York, Tokyo, Melbourne, Madras (1968).
- M. Marion and A. Mollard, An adaptive multi-level method for convection diffusion problems. ESAIM: M2AN34 (2000) 439-458.
- R.H. Nochetto, A. Schmidt and C. Verdi, A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comput.69 (2000) 1-24.
- M. Ohlberger, Convergence of a mixed finite element-finite volume method for the two phase flow in porous media. East-West J. Numer. Math.5 (1997) 183-210.
- M. Ohlberger, A posteriori error estimates for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations. Numer. Math.87 (2001) 737-761.
- Ch. Rohde, Entropy solutions for weakly coupled hyperbolic systems in several space dimensions. Z. Angew. Math. Phys.49 (1998) 470-499.
- Ch. Rohde, Upwind finite volume schemes for weakly coupled hyperbolic systems of conservation laws in 2D. Numer. Math.81 (1998) 85-123.
- H.-G. Roos, M. Stynes and L. Tobiska, Numerical methods for singularly perturbed differential equations. Convection-diffusion and flow problems, in Springer Ser. Comput. Math.24, Springer-Verlag, Berlin (1996).
- E. Tadmor, Local error estimates for discontinuous solutions of nonlinear hyperbolic equations. SIAM J. Numer. Anal.28 (1991) 891-906.
- R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, in Wiley-Teubner Ser. Adv. Numer. Math., Teubner, Stuttgart (1996).
- R. Verfürth, A posteriori error estimators for convection-diffusion equations. Numer. Math.80 (1998) 641-663.
- J.P. Vila, Convergence and error estimates in finite volume schemes for general multi-dimensional scalar conservation laws. I Explicit monotone schemes. ESAIM: M2AN28 (1994) 267-295.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.