A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations*
ESAIM: Mathematical Modelling and Numerical Analysis (2011)
- Volume: 45, Issue: 4, page 761-778
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topKyza, Irene. "A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations*." ESAIM: Mathematical Modelling and Numerical Analysis 45.4 (2011): 761-778. <http://eudml.org/doc/197399>.
@article{Kyza2011,
abstract = {
We prove a posteriori error estimates of optimal order for linear
Schrödinger-type equations in the L∞(L2)- and the
L∞(H1)-norm. We discretize only in time by the
Crank-Nicolson method. The direct use of the reconstruction
technique, as it has been proposed by Akrivis et al. in [Math. Comput.75 (2006) 511–531], leads to a posteriori upper bounds that
are of optimal order in the L∞(L2)-norm, but of
suboptimal order in the L∞(H1)-norm. The optimality in
the case of L∞(H1)-norm is recovered by using an
auxiliary initial- and boundary-value problem.
},
author = {Kyza, Irene},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Linear Schrödinger equation; Crank-Nicolson method;
Crank-Nicolson reconstruction; a posteriori error analysis; energy
techniques; L∞(L2)- and L∞(H1)-norm; linear Schrödinger equation; Crank-Nicolson reconstruction; a posteriori error analysis; energy techniques; - and -norm; numerical examples},
language = {eng},
month = {2},
number = {4},
pages = {761-778},
publisher = {EDP Sciences},
title = {A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations*},
url = {http://eudml.org/doc/197399},
volume = {45},
year = {2011},
}
TY - JOUR
AU - Kyza, Irene
TI - A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations*
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2011/2//
PB - EDP Sciences
VL - 45
IS - 4
SP - 761
EP - 778
AB -
We prove a posteriori error estimates of optimal order for linear
Schrödinger-type equations in the L∞(L2)- and the
L∞(H1)-norm. We discretize only in time by the
Crank-Nicolson method. The direct use of the reconstruction
technique, as it has been proposed by Akrivis et al. in [Math. Comput.75 (2006) 511–531], leads to a posteriori upper bounds that
are of optimal order in the L∞(L2)-norm, but of
suboptimal order in the L∞(H1)-norm. The optimality in
the case of L∞(H1)-norm is recovered by using an
auxiliary initial- and boundary-value problem.
LA - eng
KW - Linear Schrödinger equation; Crank-Nicolson method;
Crank-Nicolson reconstruction; a posteriori error analysis; energy
techniques; L∞(L2)- and L∞(H1)-norm; linear Schrödinger equation; Crank-Nicolson reconstruction; a posteriori error analysis; energy techniques; - and -norm; numerical examples
UR - http://eudml.org/doc/197399
ER -
References
top- G.D. Akrivis and V.A. Dougalis, On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation. RAIRO Modél. Math. Anal. Numér.25 (1991) 643–670.
- G. Akrivis, Ch. Makridakis and R.H. Nochetto, A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Math. Comput.75 (2006) 511–531.
- G. Akrivis, Ch. Makridakis and R.H. Nochetto, Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods. Numer. Math.114 (2009) 133–160.
- R. Anton, Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains. Bull. Soc. Math. France136 (2008) 27–65.
- D. Bohm, Quantum Theory. Dover Publications, New York (1979).
- A. Brocéhn, Galerkin methods for approximation of solutions of second order partial differential equations of Schrödinger type. Ph.D. thesis, University of Göteborg (1980).
- R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology5, Evolution Problems I. Second edition, Springer-Verlag, Berlin (2000).
- W. Dörfler, A time-and space-adaptive algorithm for the linear time-dependent Schrödinger equation. Numer. Math.73 (1996) 419–448.
- L.C. Evans, Partial Differential Equations. Second edition, American Mathematical Society, Providence (2002).
- P. Górka, Convergence of logarithmic quantum mechanics to the linear one. Lett. Math. Phys.81 (2007) 253–264.
- Th. Katsaounis and I. Kyza, A posteriori error estimates in the L∞(L2)-norm for Crank-Nicolson fully discrete approximations for linear Schrödinger equations. Preprint.
- O. Karakashian and Ch. Makridakis, A space-time finite element method for the nonlinear Schrodinger equation: the discontinuous Galerkin method. Math. Comput.67 (1998) 479–499.
- O. Karakashian and Ch. Makridakis, A space-time finite element method for the nonlinear Schrodinger equation: the continuous Galerkin method. SIAM J. Numer. Anal.36 (1999) 1779–1807.
- I. Kyza, A posteriori error estimates for approximations of semilinear parabolic and Schrödinger-type equations. Ph.D. thesis, University of Crete (2009).
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications2. Dunod, Paris (1968).
- A. Lozinski, M. Picasso and V. Prachittham, An anisotropic error estimator for the Crank-Nicolson method: Application to a parabolic problem. SIAM J. Sci. Comput.31 (2009) 2757–2783.
- Ch. Makridakis, Space and time reconstructions in a posteriori analysis of evolution problems. ESAIM: Proc.21 (2007) 31–44.
- M.O. Scully and M.S. Zubairy, Quantum Optics. Cambridge University Press (2002).
- V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Second edition, Springer-Verlag, Berlin (2006).
- R. Verfürth, A posteriori error estimates for finite element discretizations of the heat equation. Calcolo40 (2003) 195–212.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.