A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations*
ESAIM: Mathematical Modelling and Numerical Analysis (2011)
- Volume: 45, Issue: 4, page 761-778
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- G.D. Akrivis and V.A. Dougalis, On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation. RAIRO Modél. Math. Anal. Numér.25 (1991) 643–670.
- G. Akrivis, Ch. Makridakis and R.H. Nochetto, A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Math. Comput.75 (2006) 511–531.
- G. Akrivis, Ch. Makridakis and R.H. Nochetto, Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods. Numer. Math.114 (2009) 133–160.
- R. Anton, Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains. Bull. Soc. Math. France136 (2008) 27–65.
- D. Bohm, Quantum Theory. Dover Publications, New York (1979).
- A. Brocéhn, Galerkin methods for approximation of solutions of second order partial differential equations of Schrödinger type. Ph.D. thesis, University of Göteborg (1980).
- R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology5, Evolution Problems I. Second edition, Springer-Verlag, Berlin (2000).
- W. Dörfler, A time-and space-adaptive algorithm for the linear time-dependent Schrödinger equation. Numer. Math.73 (1996) 419–448.
- L.C. Evans, Partial Differential Equations. Second edition, American Mathematical Society, Providence (2002).
- P. Górka, Convergence of logarithmic quantum mechanics to the linear one. Lett. Math. Phys.81 (2007) 253–264.
- Th. Katsaounis and I. Kyza, A posteriori error estimates in the L∞(L2)-norm for Crank-Nicolson fully discrete approximations for linear Schrödinger equations. Preprint.
- O. Karakashian and Ch. Makridakis, A space-time finite element method for the nonlinear Schrodinger equation: the discontinuous Galerkin method. Math. Comput.67 (1998) 479–499.
- O. Karakashian and Ch. Makridakis, A space-time finite element method for the nonlinear Schrodinger equation: the continuous Galerkin method. SIAM J. Numer. Anal.36 (1999) 1779–1807.
- I. Kyza, A posteriori error estimates for approximations of semilinear parabolic and Schrödinger-type equations. Ph.D. thesis, University of Crete (2009).
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications2. Dunod, Paris (1968).
- A. Lozinski, M. Picasso and V. Prachittham, An anisotropic error estimator for the Crank-Nicolson method: Application to a parabolic problem. SIAM J. Sci. Comput.31 (2009) 2757–2783.
- Ch. Makridakis, Space and time reconstructions in a posteriori analysis of evolution problems. ESAIM: Proc.21 (2007) 31–44.
- M.O. Scully and M.S. Zubairy, Quantum Optics. Cambridge University Press (2002).
- V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Second edition, Springer-Verlag, Berlin (2006).
- R. Verfürth, A posteriori error estimates for finite element discretizations of the heat equation. Calcolo40 (2003) 195–212.