On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation

G. D. Akrivis; V. A. Dougalis

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 6, page 643-670
  • ISSN: 0764-583X

How to cite

top

Akrivis, G. D., and Dougalis, V. A.. "On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.6 (1991): 643-670. <http://eudml.org/doc/193643>.

@article{Akrivis1991,
author = {Akrivis, G. D., Dougalis, V. A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {conservative, highly accurate Galerkin methods; fully discrete Galerkin methods; linear Schrödinger equation; Runge-Kutta methods; Gauss- Legendre schemes; error estimates},
language = {eng},
number = {6},
pages = {643-670},
publisher = {Dunod},
title = {On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation},
url = {http://eudml.org/doc/193643},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Akrivis, G. D.
AU - Dougalis, V. A.
TI - On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 6
SP - 643
EP - 670
LA - eng
KW - conservative, highly accurate Galerkin methods; fully discrete Galerkin methods; linear Schrödinger equation; Runge-Kutta methods; Gauss- Legendre schemes; error estimates
UR - http://eudml.org/doc/193643
ER -

References

top
  1. [1] G. D. AKRIVIS and V. A. DOUGALIS, « On a conservative, high-order accurate finite element scheme for the "parabolic" equation », in Computational Acoustics, D. Lee, A. Cakmak, R. Vichnevetsky eds., v. 1, 17-26, Elsevier-North Holland, Amsterdam, 1990. MR1095058
  2. [2] G. A. BAKER, J. H. BRAMBLE and V. THOMÉE, Single step Galerkin approximations for parabolic problems, Math. Comp. 31 (1977), 818-847. Zbl0378.65061MR448947
  3. [3] J. L. BONA, V. A. DOUGALIS, O. A. KARAKASHIAN and W. MCKINNEY, Conservative high order schemes for the generalized Korteweg-de Vries equation, to appear. Zbl0824.65095
  4. [4] A. BROCÉHN, Galerkin methods for approximation of solutions of second order partial differential equations of Schrödinger type, Ph. D. Thesis, University of Göteborg, 1980. 
  5. [5] J. C. BUTCHER, Implicit Runge-Kutta processes, Math. Comp. 18 (1964), 50-64. Zbl0123.11701MR159424
  6. [6] J. C. BUTCHER, The numerical analysis of ordinary differential equations ; Runge-Kutta methods and general linear methods, John Wiley, Chichester, 1987. Zbl0616.65072MR878564
  7. [7] M. CROUZEIX, Sur la B-stabilité des méthodes de Runge-Kutta, Numer. Math. 32 (1979), 75-82. Zbl0431.65052MR525638
  8. [8] M. CROUZEIX and V. THOMÉE, On the discretization in time of semilinear parabolic equations with nonsmooth initial data, Math. Comp. 49 (1987), 359-377. Zbl0632.65097MR906176
  9. [9] K. DEKKER and J. G. VERWER, Stability of Runge-Kutta methods for stiff nonlinear differential equations, North Holland, Amsterdam, 1984. Zbl0571.65057MR774402
  10. [10] E. Jr. DENDY, An alternating direction method for Schrödinger's equation, SIAM J. Numer. Anal. 14 (1977), 1028-1032. Zbl0372.65042MR474853
  11. [11] V. A. DOUGALIS and O. A. KARAKASHIAN, On some high order accurate fully discrete Galerkin methods for the Korteweg-de Vries equation, Math. Comp. 45 (1985), 329-345. Zbl0609.65064MR804927
  12. [12] O. A. KARAKASHIAN and W. MCKINNEY, On optimal high order in time approximations for the Korteweg-de Vries equation, Math. Comp. 55 (1990), 473-496. Zbl0725.65107MR1035935
  13. [13] D. LEE and S. T. MCDANIEL, Ocean acoustic propagation by finite difference methods, Comput. Math. Appl. 14 (1987) No. 5. Zbl0637.76080MR916083
  14. [14] D. LEE, R. L. STERNBERG and M. H. SCHULTZ eds., Computational acoustics : wave propagation, Proceedings of the 1st IMACS symposium on computational acoustics, New Haven, 6-8 August 1986, vols. 1, 2, North Holland, Amsterdam, 1988. Zbl0684.00026MR937265
  15. [15] J. L. LIONS and E. MAGENES, Problèmes aux limites non homogènes et applications, vol. 2, Dunod, Paris, 1968. Zbl0165.10801MR247244
  16. [16] A. QUARTERONI, Mixed approximations of evolution problems, Comput. Meths. Appl. Mech. Engrg. 24 (1980), 137-163. Zbl0457.73049MR597041
  17. [17] J. M. SANZ-SERNA, Methods for the numerical solution of the nonlinear Schrödinger equation, Math. Comp. 43 (1984), 21-27. Zbl0555.65061MR744922
  18. [18] J. M. SANZ-SERNA and J. G. VERWER, Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation, IMA J. Num. Anal. 6 (1986), 25-42. Zbl0593.65087MR967679
  19. [19] M. H. SCHULTZ and D. LEE eds., Computational ocean acoustics, Invited lectures from the workshop held at Yale University, 1-3 August 1984, Comput. Math. Appl. 11 (1985) Nos 7-8. MR809597
  20. [20] F. D. TAPPERT, « The parabolic approximation method », in Wave propagation and underwater acoustics, J. B. Keller and J. S. Papadakis eds., 224-287, Lecture Notes in Physics v. 70, Springer-Verlag, Berlin-Heidelberg, 1977. MR475274
  21. [21] V. THOMÉE « Convergence estimates for semi-discrete Galerkin methods for initial-value problems », in Numerische, insbesondere approximations-theoretische Behandlung von Funktionalgleichungen, R. Ansorge and W. Törnig eds., 243-262, Lecture Notes in Mathematics v. 333, Springer-Verlag, Berlin-Heidelberg, 1973. Zbl0267.65069MR458948
  22. [22] V. THOMÉE, Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics v. 1054, Springer-Verlag, Berlin-Heidelberg, 1984. Zbl0528.65052MR744045
  23. [23] L. B. WAHLBIN, « A dissipative Galerkin method for the numerical solution of first order hyperbolic equations », in Mathematical aspects of fînite elements in partial differential equations, C. de Boor ed., 147-169, Academic Press, New York, 1974. Zbl0346.65056MR658322
  24. [24] G. D. AKRIVIS, V. A. DOUGALIS and O. A. KARAKASHIAN, On fully discrete Galerkin methods of second-order temporal accuracy for the Nonlinear Schrödinger Equation, to appear in Numer. Math. Zbl0739.65096MR1103752
  25. [25] O. KARAKASHIAN, G. D. AKRIVIS and V. A. DOUGALIS, On optimal-order error estimates for the Nonlinear Schrödinger Equation, to appear. Zbl0774.65091MR1211396

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.