On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation
- Volume: 25, Issue: 6, page 643-670
- ISSN: 0764-583X
Access Full Article
topHow to cite
topAkrivis, G. D., and Dougalis, V. A.. "On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.6 (1991): 643-670. <http://eudml.org/doc/193643>.
@article{Akrivis1991,
author = {Akrivis, G. D., Dougalis, V. A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {conservative, highly accurate Galerkin methods; fully discrete Galerkin methods; linear Schrödinger equation; Runge-Kutta methods; Gauss- Legendre schemes; error estimates},
language = {eng},
number = {6},
pages = {643-670},
publisher = {Dunod},
title = {On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation},
url = {http://eudml.org/doc/193643},
volume = {25},
year = {1991},
}
TY - JOUR
AU - Akrivis, G. D.
AU - Dougalis, V. A.
TI - On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 6
SP - 643
EP - 670
LA - eng
KW - conservative, highly accurate Galerkin methods; fully discrete Galerkin methods; linear Schrödinger equation; Runge-Kutta methods; Gauss- Legendre schemes; error estimates
UR - http://eudml.org/doc/193643
ER -
References
top- [1] G. D. AKRIVIS and V. A. DOUGALIS, « On a conservative, high-order accurate finite element scheme for the "parabolic" equation », in Computational Acoustics, D. Lee, A. Cakmak, R. Vichnevetsky eds., v. 1, 17-26, Elsevier-North Holland, Amsterdam, 1990. MR1095058
- [2] G. A. BAKER, J. H. BRAMBLE and V. THOMÉE, Single step Galerkin approximations for parabolic problems, Math. Comp. 31 (1977), 818-847. Zbl0378.65061MR448947
- [3] J. L. BONA, V. A. DOUGALIS, O. A. KARAKASHIAN and W. MCKINNEY, Conservative high order schemes for the generalized Korteweg-de Vries equation, to appear. Zbl0824.65095
- [4] A. BROCÉHN, Galerkin methods for approximation of solutions of second order partial differential equations of Schrödinger type, Ph. D. Thesis, University of Göteborg, 1980.
- [5] J. C. BUTCHER, Implicit Runge-Kutta processes, Math. Comp. 18 (1964), 50-64. Zbl0123.11701MR159424
- [6] J. C. BUTCHER, The numerical analysis of ordinary differential equations ; Runge-Kutta methods and general linear methods, John Wiley, Chichester, 1987. Zbl0616.65072MR878564
- [7] M. CROUZEIX, Sur la B-stabilité des méthodes de Runge-Kutta, Numer. Math. 32 (1979), 75-82. Zbl0431.65052MR525638
- [8] M. CROUZEIX and V. THOMÉE, On the discretization in time of semilinear parabolic equations with nonsmooth initial data, Math. Comp. 49 (1987), 359-377. Zbl0632.65097MR906176
- [9] K. DEKKER and J. G. VERWER, Stability of Runge-Kutta methods for stiff nonlinear differential equations, North Holland, Amsterdam, 1984. Zbl0571.65057MR774402
- [10] E. Jr. DENDY, An alternating direction method for Schrödinger's equation, SIAM J. Numer. Anal. 14 (1977), 1028-1032. Zbl0372.65042MR474853
- [11] V. A. DOUGALIS and O. A. KARAKASHIAN, On some high order accurate fully discrete Galerkin methods for the Korteweg-de Vries equation, Math. Comp. 45 (1985), 329-345. Zbl0609.65064MR804927
- [12] O. A. KARAKASHIAN and W. MCKINNEY, On optimal high order in time approximations for the Korteweg-de Vries equation, Math. Comp. 55 (1990), 473-496. Zbl0725.65107MR1035935
- [13] D. LEE and S. T. MCDANIEL, Ocean acoustic propagation by finite difference methods, Comput. Math. Appl. 14 (1987) No. 5. Zbl0637.76080MR916083
- [14] D. LEE, R. L. STERNBERG and M. H. SCHULTZ eds., Computational acoustics : wave propagation, Proceedings of the 1st IMACS symposium on computational acoustics, New Haven, 6-8 August 1986, vols. 1, 2, North Holland, Amsterdam, 1988. Zbl0684.00026MR937265
- [15] J. L. LIONS and E. MAGENES, Problèmes aux limites non homogènes et applications, vol. 2, Dunod, Paris, 1968. Zbl0165.10801MR247244
- [16] A. QUARTERONI, Mixed approximations of evolution problems, Comput. Meths. Appl. Mech. Engrg. 24 (1980), 137-163. Zbl0457.73049MR597041
- [17] J. M. SANZ-SERNA, Methods for the numerical solution of the nonlinear Schrödinger equation, Math. Comp. 43 (1984), 21-27. Zbl0555.65061MR744922
- [18] J. M. SANZ-SERNA and J. G. VERWER, Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation, IMA J. Num. Anal. 6 (1986), 25-42. Zbl0593.65087MR967679
- [19] M. H. SCHULTZ and D. LEE eds., Computational ocean acoustics, Invited lectures from the workshop held at Yale University, 1-3 August 1984, Comput. Math. Appl. 11 (1985) Nos 7-8. MR809597
- [20] F. D. TAPPERT, « The parabolic approximation method », in Wave propagation and underwater acoustics, J. B. Keller and J. S. Papadakis eds., 224-287, Lecture Notes in Physics v. 70, Springer-Verlag, Berlin-Heidelberg, 1977. MR475274
- [21] V. THOMÉE « Convergence estimates for semi-discrete Galerkin methods for initial-value problems », in Numerische, insbesondere approximations-theoretische Behandlung von Funktionalgleichungen, R. Ansorge and W. Törnig eds., 243-262, Lecture Notes in Mathematics v. 333, Springer-Verlag, Berlin-Heidelberg, 1973. Zbl0267.65069MR458948
- [22] V. THOMÉE, Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics v. 1054, Springer-Verlag, Berlin-Heidelberg, 1984. Zbl0528.65052MR744045
- [23] L. B. WAHLBIN, « A dissipative Galerkin method for the numerical solution of first order hyperbolic equations », in Mathematical aspects of fînite elements in partial differential equations, C. de Boor ed., 147-169, Academic Press, New York, 1974. Zbl0346.65056MR658322
- [24] G. D. AKRIVIS, V. A. DOUGALIS and O. A. KARAKASHIAN, On fully discrete Galerkin methods of second-order temporal accuracy for the Nonlinear Schrödinger Equation, to appear in Numer. Math. Zbl0739.65096MR1103752
- [25] O. KARAKASHIAN, G. D. AKRIVIS and V. A. DOUGALIS, On optimal-order error estimates for the Nonlinear Schrödinger Equation, to appear. Zbl0774.65091MR1211396
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.