Un algorithme d'identification de frontières soumises à des conditions aux limites de Signorini
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 34, Issue: 3, page 707-722
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topChaabane, Slim, and Jaoua, Mohamed. "Un algorithme d'identification de frontières soumises à des conditions aux limites de Signorini." ESAIM: Mathematical Modelling and Numerical Analysis 34.3 (2010): 707-722. <http://eudml.org/doc/197431>.
@article{Chaabane2010,
abstract = {
This work deals with a non linear inverse problem of reconstructing
an unknown boundary γ, the boundary conditions prescribed on γ being of Signorini type,
by using boundary measurements. The problem is turned into an optimal shape design one, by constructing
a Kohn & Vogelius-like cost function, the only minimum of which is proved to be the unknown boundary.
Furthermore, we prove that the derivative of this cost function with respect to a direction θ
depends only on the state u0, and not on its Lagrangian derivative u1(θ).
},
author = {Chaabane, Slim, Jaoua, Mohamed},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Geometrical inverse problems; identification;
Signorini type boundary conditions; unknown boundary; domaine derivatives;
Kohn-Vogelius function; optimal shape design.; geometrical inverse problems; Signorini type boundary conditions; domain derivative; Kohn-Vogelius function; optimal shape design; numerical examples; gradient algorithm},
language = {eng},
month = {3},
number = {3},
pages = {707-722},
publisher = {EDP Sciences},
title = {Un algorithme d'identification de frontières soumises à des conditions aux limites de Signorini},
url = {http://eudml.org/doc/197431},
volume = {34},
year = {2010},
}
TY - JOUR
AU - Chaabane, Slim
AU - Jaoua, Mohamed
TI - Un algorithme d'identification de frontières soumises à des conditions aux limites de Signorini
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 3
SP - 707
EP - 722
AB -
This work deals with a non linear inverse problem of reconstructing
an unknown boundary γ, the boundary conditions prescribed on γ being of Signorini type,
by using boundary measurements. The problem is turned into an optimal shape design one, by constructing
a Kohn & Vogelius-like cost function, the only minimum of which is proved to be the unknown boundary.
Furthermore, we prove that the derivative of this cost function with respect to a direction θ
depends only on the state u0, and not on its Lagrangian derivative u1(θ).
LA - eng
KW - Geometrical inverse problems; identification;
Signorini type boundary conditions; unknown boundary; domaine derivatives;
Kohn-Vogelius function; optimal shape design.; geometrical inverse problems; Signorini type boundary conditions; domain derivative; Kohn-Vogelius function; optimal shape design; numerical examples; gradient algorithm
UR - http://eudml.org/doc/197431
ER -
References
top- S. Andrieux, A. Ben Abda et M. Jaoua, Identifiabilité de frontiètres inaccessibles par une mesure unique de surface. Annales Maghrébines de l'Ingénieur, 7 (1993) 5-24.
- A. Ben Abda, S. Chaabane, F. El Dabaghi et M. Jaoua, On a non linear geometrical inverse problem of Signorini type: identifiability and stability. Math. Meth. in the Appl. Sci.21 (1998) 1379-1398.
- F. Ben Belgacem, Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element method. Sinum (à paraître).
- F. Brezzi, W.W. Hager et P.A. Raviart Error estimates for the finite element solution of variational inequalities. Numer. Math.28 (1977) 431-443.
- S. Chaabane et M. Jaoua, Identification of Robin coefficients by the means of boundary measurements. Inverse Problems15 (1999) 1425-1438.
- F. Hettlich et W. Rundell Iterative methods for the reconstraction of an inverse potential problem. Inverse Problems12 (1996) 251-266.
- K. Khodja et M. Moussaoui, Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan. Comm. Partial Diff. Eq.17 (1992) 805-826.
- R.V. Kohn et A. McKenney Numerical implementation of a variational method for electrical impedance tomography. Inverse Problems6 (1990) 389-414.
- R.V. Kohn et M. Vogelius, Determinig conductivity by boundary measurements; interior results. Comm. Pure Appl. Math.38 (1985) 644-667.
- R.V. Kohn et M. Vogelius, Relaxation of a variational method for impedance computed tomography. Comm. Pure Appl. Math.40 (1987) 745-777.
- K. Kunisch et X. Pan, Estimation of interfaces from boundary measurements. SIAM J. Cont. Opt.32 (1994) 867-894.
- J.L.M. Lions, Quelques méthodes de résolution de problèmes aux limites non linéaires. Dunod, Paris (1969).
- J.L. Lions et E. Magenes, Problèmes aux limites non homogènes et applications, tome 1. Dunod, Paris (1968).
- J.R. Roche et J. Sokolowski, Numerical methods for shape identification problems. Control and Cybernetics25 (1996) 867-894.
- J. Simon, Differentiation with respect to the domaine in boundary value problems. Num. Func. Anal. Opt.2 (1980) 649-687.
- J. Sokolowski et J.P. Zolesio, Introduction to shape optimization; shape sensitivity analysis. Springer Verlag (1992).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.