Global Existence of Periodic Solutions in a Delayed Tumor-Immune Model
Mathematical Modelling of Natural Phenomena (2010)
- Volume: 5, Issue: 7, page 29-34
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topReferences
top- K.L. Cooke, Z. Grossman. Discrete delay, distributed delay and stability switches. Journal of Mathematical Analysis and Applications, 86 (1982), No. 2, 592–627.
- M. Gałach. Dynamics of the tumor-immune system competition: the effect of time delay. Int. J. Appl. Comput. Sci., 13 (2003), No. 3, 395–406.
- V.A. Kuznetsov, M.A. Taylor. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis. Bull. Math. Biol., 56 (1994), No. 2, 295–321.
- J. Wu. Symmetric functional differential equation and neural networks with memory. Trans. Am. Math. Sco., 350 (1998), No. 12, 4799–4838.
- J. K. Hale, H. Koçak. Dynamics and bifurcations. Springer- Verlag, New York, 1991.
- J. K. Hale, S.M. Verduyn Lunel. Introduction to functional differential equations. Springer- Verlag, New York, 1993.