On the GBDT Version of the Bäcklund-Darboux Transformation and its Applications to Linear and Nonlinear Equations and Weyl Theory
Mathematical Modelling of Natural Phenomena (2010)
- Volume: 5, Issue: 4, page 340-389
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topSakhnovich, A.. "On the GBDT Version of the Bäcklund-Darboux Transformation and its Applications to Linear and Nonlinear Equations and Weyl Theory." Mathematical Modelling of Natural Phenomena 5.4 (2010): 340-389. <http://eudml.org/doc/197668>.
@article{Sakhnovich2010,
abstract = {A general theorem on the GBDT version of the Bäcklund-Darboux transformation for systems
depending rationally on the spectral parameter is treated and its applications to
nonlinear equations are given. Explicit solutions of direct and inverse problems for
Dirac-type systems, including systems with singularities, and for the system auxiliary to
the N-wave equation are reviewed. New results on explicit construction of
the wave functions for radial Dirac equation are obtained.},
author = {Sakhnovich, A.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {Bäcklund-Darboux transformation; Weyl function; reflection coefficient; direct problem; inverse problem; Dirac-type system; radial Dirac equation; integrable equation},
language = {eng},
month = {5},
number = {4},
pages = {340-389},
publisher = {EDP Sciences},
title = {On the GBDT Version of the Bäcklund-Darboux Transformation and its Applications to Linear and Nonlinear Equations and Weyl Theory},
url = {http://eudml.org/doc/197668},
volume = {5},
year = {2010},
}
TY - JOUR
AU - Sakhnovich, A.
TI - On the GBDT Version of the Bäcklund-Darboux Transformation and its Applications to Linear and Nonlinear Equations and Weyl Theory
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/5//
PB - EDP Sciences
VL - 5
IS - 4
SP - 340
EP - 389
AB - A general theorem on the GBDT version of the Bäcklund-Darboux transformation for systems
depending rationally on the spectral parameter is treated and its applications to
nonlinear equations are given. Explicit solutions of direct and inverse problems for
Dirac-type systems, including systems with singularities, and for the system auxiliary to
the N-wave equation are reviewed. New results on explicit construction of
the wave functions for radial Dirac equation are obtained.
LA - eng
KW - Bäcklund-Darboux transformation; Weyl function; reflection coefficient; direct problem; inverse problem; Dirac-type system; radial Dirac equation; integrable equation
UR - http://eudml.org/doc/197668
ER -
References
top- M.J. Ablowitz, S. Chakravarty, A.D. Trubatch, J. Villarroel. A novel class of solutions of the non-stationary Schrödinger and the Kadomtsev-Petviashvili I equations. Phys. Lett. A, n267 (2000), No. 2-3, 132–146.
- M.J. Ablowitz, R. Haberman. Resonantly coupled nonlinear evolution equations. J. Math. Phys., 16 (1975), 2301–2305.
- M. Adler, P. van Moerbeke. Birkhoff strata, Bäcklund transformations, and regularization of isospectral operators. Adv. Math., 108 (1994), No. 1, 140–204.
- S. Albeverio, R. Hryniv, Ya. Mykytyuk. Reconstruction of radial Dirac operators.J. Math. Phys. 48 (2007), No. 4, 043501, 14 pp.
- D. Alpay, I. Gohberg. Inverse spectral problem for differential operators with rational scattering matrix functions. J. Diff. Eqs., 118 (1995), 1–19.
- D. Alpay, I. Gohberg, M.A. Kaashoek, A.L. Sakhnovich. Direct and inverse scattering problem for canonical systems with a strictly pseudo-exponential potential. Math. Nachr., 215 (2000), 5–31.
- A.V. Bäcklund. Zur Theorie der partiellen Differential gleichungen erster Ordnung. Math. Ann., 17 (1880), 285–328.
- H. Bart, I. Gohberg, M.A. Kaashoek.Minimal factorization of matrix and operator functions. Operator Theory: Adv. Appl., 1, Birkhäuser Verlag, Basel, 1979.
- R. Beals, R.R. Coifman. Scattering and inverse scattering for first-order systems: II. Inverse Probl., 3 (1987), 577–593.
- A.B. Borisov, V.V. Kiseliev. Inverse problem for an elliptic sine-Gordon equation with an asymptotic behaviour of the cnoidal-wave type. Inverse Probl., 5 (1989), 959–982.
- A. Boutet de Monvel, V. Marchenko. Generalization of the Darboux transform. Matematicheskaya fizika, analiz, geometriya, 1 (1994), 479–504.
- B. Carl, C. Schiebold. Nonlinear equations in soliton physics and operator ideals. Nonlinearity, 12 (1999), 333–364.
- R.C. Cascaval, F. Gesztesy, H. Holden, Yu. Latushkin. Spectral analysis of Darboux transformations for the focusing NLS hierarchy. J. Anal. Math., 93 (2004), 139–197.
- D.V. Chudnovsky, G.V. Chudnovsky. Bäcklund transformation as a method of decomposition and reproduction of two-dimensional nonlinear systems. Phys. Lett. A, 87 (1982), No. 7, 325–329.
- J. Cieslinski. An effective method to compute N-fold Darboux matrix and N-soliton surfaces. J. Math. Phys., 32 (1991), 2395–2399.
- S. Clark, F. Gesztesy. On self-adjoint andJ-self-adjoint Dirac-type operators: a case study. Contemporary Mathematics, 412 (2006), 103–140.
- M.J. Corless, A.E. Frazho. Linear Systems and Control - An Operator Perspective. Marcel Dekker, New York, 2003.
- M.M. Crum. Associated Sturm-Liouville systems. Quart. J. Math. Oxford Ser. (2), 6 (1955), 121–127.
- G. Darboux. Lecons sur la Theorie Generale de Surface et les Applications Geometriques du Calcul Infinitesimal, II. Gauthiers-Villars, Paris, 1889.
- P.A. Deift. Applications of a commutation formula. Duke Math. J., 45 (1978), 267–310.
- L.D. Faddeev, L.A. Takhtajan. Hamiltonian methods in the theory of solitons. Springer Verlag, NY, 1986.
- B. Fritzsche, B. Kirstein, A.L. Sakhnovich. Completion problems and scattering problems for Dirac type differential equations with singularities. J. Math. Anal. Appl., 317 (2006), 510–525.
- B. Fritzsche, B. Kirstein, A.L. Sakhnovich. Semiseparable integral operators and explicit solution of an inverse problem for the skew-self-adjoint Dirac-type system. arXiv:0904.2357
- F. Gesztesy. A complete spectral characterization of the double commutation method. J. Funct. Anal., 117 (1993), No. 2, 401–446.
- F. Gesztesy, H. Holden.Soliton equations and their algebro-geometric solutions. Cambridge Studies in Advanced Mathematics, 79, Cambridge University Press, Cambridge, 2003.
- F. Gesztesy, B. Simon, G. Teschl. Spectral deformations of one-dimensional Schrödinger operators. J. Anal. Math., 70 (1996), 267-324.
- F. Gesztesy, G. Teschl. On the double commutation method. Proc. Am. Math. Soc., 124 (1996), No. 6, 1831–1840.
- I. Gohberg, M.A. Kaashoek, A.L. Sakhnovich. Canonical systems with rational spectral densities: explicit formulas and applications. Mathematische Nachr.194 (1998), 93–125.
- I. Gohberg, M.A. Kaashoek, A.L. Sakhnovich. Pseudocanonical systems with rational Weyl functions: explicit formulas and applications. J. Differ. Equations, 146 (1998), 375–398.
- I. Gohberg, M.A. Kaashoek, A.L. Sakhnovich. Sturm-Liouville systems with rational Weyl functions: explicit formulas and applications. IEOT, 30 (1998), 338–377.
- I. Gohberg, M.A. Kaashoek, A.L. Sakhnovich. Canonical systems on the full line with rational spectral densities: explicit formulas. In: Operator Theory: Adv. Appl., 117, M.G. Krein volume (2000), 127–139.
- I. Gohberg, M.A. Kaashoek, A.L. Sakhnovich. Bound states for canonical systems on the half and full line: explicit formulas. IEOT, 40 (2001), No. 3, 268–277.
- I. Gohberg, M.A. Kaashoek, A.L. Sakhnovich. Scattering problems for a canonical system with a pseudo-exponential potential. Asymptotic Analysis, 29 (2002), No. 1, 1–38.
- C.H. Gu, H. Hu, Z. Zhou. Darboux transformations in integrable systems. Springer Verlag, 2005.
- C.G.T. Jacobi. Über eine neue Methode zur Integration der hyperelliptischen Differentialgleichungen und über die rationale Form ihrer vollständigen algebraischen Integralgleichungen. J. Reine Angew. Math., 32 (1846), 220–226.
- M. Jaworski, D. Kaup. Direct and inverse scattering problem associated with the elliptic sinh-Gordon equation. Inverse Problems, 6 (1990), 543–556.
- M.A. Kaashoek, A.L. Sakhnovich. Discrete skew self-adjoint canonical system and the isotropic Heisenberg magnet model. J. Funct. Anal., 228 (2005), 207–233.
- R.E. Kalman, P. Falb, M. Arbib. Topics in mathematical system theory. McGraw-Hill, NY, 1969.
- A. Kasman, M. Gekhtman. Solitons and almost-intertwining matrices. J. Math. Phys., 42 (2001), 3540–3551.
- V.E. Katsnelson. Right and left joint system representation of a rational matrix function in general position. In: Operator Theory: Adv. Appl., 123 (2001), 337–400.
- B.G. Konopelchenko, C. Rogers. Bäcklund and reciprocal transformations: gauge connections. In: Nonlinear equations in applied sciences (W.F. Ames, C. Rogers, eds.), Academic Press, San Diego, 1992, 317–362.
- V.B. Kuznetsov, M. Salerno, E.K. Sklyanin. Quantum Bäcklund transformation for the integrable DST model. J. Phys. A, 33 (2000), No. 1, 171–189.
- D. Levi, O. Ragnisco, A. Sym. Dressing method vs. classical Darboux transformation. Nuovo Cimento B, 83 (1984), 34–41.
- P. Lancaster, L. Rodman,Algebraic Riccati equations. Clarendon Press, Oxford, 1995.
- Q.P. Liu, M. Manas. Vectorial Darboux transformations for the Kadomtsev-Petviashvili hierarchy. J. Nonlinear Sci., 9 (1999), No. 2, 213–232.
- V.A. Marchenko. Nonlinear equations and operator algebras. Reidel Publishing Co., Dordrecht, 1988.
- V.B. Matveev. Positons: slowly decaying soliton analogs. Teoret. Mat. Fiz., 131 (2002), No. 1, 44-61.
- V.B. Matveev, M.A. Salle.Darboux transformations and solitons. Springer Verlag, Berlin, 1991.
- R. Mennicken, A.L. Sakhnovich, C. Tretter. Direct and inverse spectral problem for a system of differential equations depending rationally on the spectral parameter. Duke Math. J., 109 (2001), No. 3, 413–449.
- R. Miura (ed.).Bäcklund Transformations. Lecture Notes in Math., 515, Springer-Verlag, Berlin, 1976.
- K. Pohlmeyer. Integrable Hamiltonian systems and interactions through quadratic constraints. Comm. Math. Phys., 46 (1976), No. 3, 207–221.
- C. Rogers, W.K. Schief.Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
- D.S. Sattinger, V.D. Zurkowski. Gauge theory of Bäcklund transformations II. Phys. D, 26 (1987), 225–250.
- A.L. Sakhnovich. Nonlinear Schrödinger equation on a semi-axis and an inverse problem associated with it. Ukr. Math. J., 42 (1990), No. 3, 316-323.
- A.L. Sakhnovich. The Goursat problem for the sine-Gordon equation and the inverse spectral problem. Russ. Math. Iz. VUZ, 36 (1992), No. 11, 42–52.
- A.L. Sakhnovich. Exact solutions of nonlinear equations and the method of operator identities. Lin. Alg. Appl., 182 (1993), 109–126.
- A.L. Sakhnovich. Dressing procedure for solutions of nonlinear equations and the method of operator identities. Inverse Problems, 10 (1994), 699-710.
- A.L. Sakhnovich. Iterated Darboux transform (the case of rational dependence on the spectral parameter). Dokl. Natz. Akad. Nauk Ukrain., 7 (1995), 24–27.
- A.L. Sakhnovich. Iterated Bäcklund-Darboux transformation and transfer matrix-function (nonisospectral case). Chaos, Solitons and Fractals, 7 (1996), 1251–1259.
- A.L. Sakhnovich. Iterated Bäcklund-Darboux transform for canonical systems. J. Functional Anal., 144 (1997), 359–370.
- A.L. Sakhnovich. Inverse spectral problem related to the N-wave equation. In: Operator Theory: Adv. Appl., 117, M.G. Krein volume (2000), 323–338.
- A.L. Sakhnovich. Generalized Bäcklund-Darboux transformation: spectral properties and nonlinear equations. JMAA, 262 (2001), 274–306.
- A.L. Sakhnovich. Dirac type and canonical systems: spectral and Weyl-Titchmarsh fuctions, direct and inverse problems. Inverse Problems, 18 (2002), 331–348.
- A.L. Sakhnovich. Dirac type system on the axis: explicit formulas for matrix potentials with singularities and soliton-positon interactions. Inverse Problems, 19 (2003), 845–854.
- A.L. Sakhnovich. Non-Hermitian matrix Schrödinger equation: Bäcklund-Darboux transformation, Weyl functions, and 𝒫𝒯 symmetry. J. Phys. A, 36 (2003), 7789–7802.
- A.L. Sakhnovich. Matrix Kadomtsev-Petviashvili equation: matrix identities and explicit non-singular solutions. J. Phys. A, 36 (2003), 5023–5033.
- A.L. Sakhnovich. Second harmonic generation: Goursat problem on the semi-strip, Weyl functions and explicit solutions. Inverse Problems21 (2005), No. 2, 703-716.
- A.L. Sakhnovich. Non-self-adjoint Dirac-type systems and related nonlinear equations: wave functions, solutions, and explicit formulas. IEOT, 55 (2006), 127–143.
- A.L. Sakhnovich. Harmonic maps, Bäcklund-Darboux transformations and "line solution" analogues. J. Phys. A: Math. Gen., 39 (2006), 15379–15390.
- A.L. Sakhnovich. Skew-self-adjoint discrete and continuous Dirac-type systems: inverse problems and Borg-Marchenko theorems. Inverse Problems, 22 (2006), 2083–2101.
- A.L. Sakhnovich. Bäcklund-Darboux transformation for non-isospectral canonical system and Riemann-Hilbert problem. Symmetry Integrability Geom. Methods Appl., 3 (2007), 054.
- A.L. Sakhnovich. Discrete canonical system and non-Abelian Toda lattice: Bäcklund-Darboux transformation and Weyl functions. Math. Nachr., 280 (2007), No. 5-6, 1–23.
- A.L. Sakhnovich. Weyl functions, inverse problem and special solutions for the system auxiliary to the nonlinear optics equation. Inverse Problems, 24 (2008), 025026.
- A.L. Sakhnovich. Nonisospectral integrable nonlinear equations with external potentials and their GBDT solutions. J. Phys. A: Math. Theor., 41 (2008), 155204.
- A.L. Sakhnovich. Weyl functions, inverse problem and special solutions for the system auxiliary to the nonlinear optics equation. Inverse Problems, 24 (2008), 025026.
- A.L. Sakhnovich, J.P. Zubelli. Bundle bispectrality for matrix differential equations. IEOT, 41 (2001), 472–496.
- L.A. Sakhnovich. On the factorization of the transfer matrix function. Sov. Math. Dokl., 17 (1976), 203–207.
- L.A. Sakhnovich.Spectral theory of canonical differential systems, method of operator identities. Operator Theory: Adv. Appl., 107, Birkhäuser Verlag, Basel-Boston, 1999.
- C. Schiebold. Explicit solution formulas for the matrix-KP. Glasg. Math. J., 51A (2009), 147–155.
- C.L. Terng, K. Uhlenbeck. Bäcklund transformations and loop group actions. Commun. Pure Appl. Math., 53 (2000), 1–75.
- G. Teschl. Deforming the point spectra of one-dimensional Dirac operators. Proc. Amer. Math. Soc., 126 (1998), No. 10, 2873–2881.
- O.C. Wright, M.G. Forest. On the Bäcklund-gauge transformation and homoclinic orbits of a coupled nonlinear Schrödinger system. Physica D, 141 (2000), 104–116.
- A.E. Yagle, B.C. Levy. The Schur algorithm and its applications. Acta Appl.Math., 3 (1985), 255–284.
- V.E. Zakharov, S.V. Manakov. Theory of resonance interaction of wave packages in nonlinear medium. JETP, 69 (1975), No. 5, 1654–1673.
- V.E. Zakharov, A.V. Mikhailov. Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method (Russian). Soviet Phys. JETP, 74 (1978), No. 6, 1953–1973.
- V.E. Zakharov, A.V. Mikhailov. On the integrability of classical spinor models in two-dimensional space-time. Comm. Math. Phys., 74 (1980), 21–40.
- V.E. Zaharov, A.B. Shabat. On soliton interaction in stable media. JETP, 64 (1973), 1627–1639.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.