On Chemotaxis Models with Cell Population Interactions

Z. A. Wang

Mathematical Modelling of Natural Phenomena (2010)

  • Volume: 5, Issue: 3, page 173-190
  • ISSN: 0973-5348

Abstract

top
This paper extends the volume filling chemotaxis model [18, 26] by taking into account the cell population interactions. The extended chemotaxis models have nonlinear diffusion and chemotactic sensitivity depending on cell population density, which is a modification of the classical Keller-Segel model in which the diffusion and chemotactic sensitivity are constants (linear). The existence and boundedness of global solutions of these models are discussed and the numerical pattern formations are shown. The further improvement is proposed in the end.

How to cite

top

Wang, Z. A.. "On Chemotaxis Models with Cell Population Interactions." Mathematical Modelling of Natural Phenomena 5.3 (2010): 173-190. <http://eudml.org/doc/197722>.

@article{Wang2010,
abstract = {This paper extends the volume filling chemotaxis model [18, 26] by taking into account the cell population interactions. The extended chemotaxis models have nonlinear diffusion and chemotactic sensitivity depending on cell population density, which is a modification of the classical Keller-Segel model in which the diffusion and chemotactic sensitivity are constants (linear). The existence and boundedness of global solutions of these models are discussed and the numerical pattern formations are shown. The further improvement is proposed in the end.},
author = {Wang, Z. A.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {chemotaxis; Keller-Segel model; cell interactions; nonlinear diffusion; blow up; volume filling; chemotactic sensitivity; pattern formation},
language = {eng},
month = {4},
number = {3},
pages = {173-190},
publisher = {EDP Sciences},
title = {On Chemotaxis Models with Cell Population Interactions},
url = {http://eudml.org/doc/197722},
volume = {5},
year = {2010},
}

TY - JOUR
AU - Wang, Z. A.
TI - On Chemotaxis Models with Cell Population Interactions
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/4//
PB - EDP Sciences
VL - 5
IS - 3
SP - 173
EP - 190
AB - This paper extends the volume filling chemotaxis model [18, 26] by taking into account the cell population interactions. The extended chemotaxis models have nonlinear diffusion and chemotactic sensitivity depending on cell population density, which is a modification of the classical Keller-Segel model in which the diffusion and chemotactic sensitivity are constants (linear). The existence and boundedness of global solutions of these models are discussed and the numerical pattern formations are shown. The further improvement is proposed in the end.
LA - eng
KW - chemotaxis; Keller-Segel model; cell interactions; nonlinear diffusion; blow up; volume filling; chemotactic sensitivity; pattern formation
UR - http://eudml.org/doc/197722
ER -

References

top
  1. P.H. Chavanis. A stochastic keller-segel model of chemotaxis. Commun. Nonlinear Sci Numer Simulat. 15 (2010), 60-70.  
  2. Y.Z. Choi, Z.A. Wang. Prevention of blow up by fast diffusion in chemotaxis., J. Math. Anal. Appl., 362 (2010), 553-564.  
  3. D. Kaiser. Cell-cell interactions. Prokaryotes, 1 (2006), 221-245.  
  4. M. Eisenbach. Chemotaxis. Imperial College Press, London, 2004.  
  5. T. Hillen, K. Painter. A users guide to PDE models for chemotaxis. J. Math. Biol., 57 (2009), 183-217.  
  6. T. Hillen, K. Painter. Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math., 26 (2001), 280-301.  
  7. T. Höfer, J.A. Sherratt, P.K. Maini. Dictyostelium discoideum: cellular self-organisation in an excitable biological medium. Proc. R. Soc. Lond. B., 259 (1995), 249-257. 
  8. D. Hortsmann. From 1970 until present: the keller-segel model in chemotaxis and its consequences: I. Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165. 
  9. D. Hortsmann. From 1970 until present: the keller-segel model in chemotaxis and its consequences: II. Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69. 
  10. E.F. Keller, L.A. Segel. Initiation of slime mold aggregation viewd as an instability. J. Theor. Biol., 26 (1970), 399-415. 
  11. H. Kuiper, L. Dung. Global attractors for cross-diffusion systems on domains of arbitrary dimensions. Rocky Mountain J. Math., 37 (2007), No 5, 1645-1668.  
  12. P. Laurençot, D. Wrzosek. A chemotaxis model with threshold density and degenerate diffusion. In: Progress in Nonlinear Diffusion Equations and Their Application., 64 (2005): 273-290.  
  13. P.M. Lushnikov, N. Chen, M. Alber. Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. Phys. Rev. E., 78 (2008), 061904.  
  14. J. Murray, Mathematical biology: an introduction. Third edition, Springer, 2002.  
  15. S. Childress, J.K Percus. Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217-237.  
  16. T. Kowalczyk. Preventing blow-up in a chemotaxis model. J. Math. Anal. Appl., 305 (2005), 566-588. 
  17. W.I. Neuman. The long-time behavior of the solution to a non-linear diffusion problem in population genetics and combustion. J. Theor. Biol., 104 (1985), 472-484. 
  18. P. Painter, T. Hillen. Volume-filling and quorum-sensing in models for chemosensitive move- ment. Can. Appl. Math. Quart., 10 (2002), No 4, 501-543.  
  19. K. Painter, J. A. Sherratt. Modelling the movement of interacting cell populations. J. Theor. Biol., 225 (2003), 327-339. 
  20. B. Perthame. Transport equations in biology. Birkhäuser, Basel, 2007.  
  21. Peter Pivonka.Personal communication. 2009.  
  22. A. Okubo, Diffusion and Ecological problems: Mathematical Models. Springer-Verlag, Berlin-Heidelberg-New York, 1980.  
  23. A. Okubo. Dynamical aspects of animal grouping: swarms, schools, flocks and herds. Adv. Biophys., 22 (1986), 1-94. 
  24. N. Shigesada, K. Kawasaki. Biological Invasions: Theory and Practice. Oxford University Press, Oxford, 1997.  
  25. H.G. Othmer, A. Stevens. Aggregation, blowup and collapse: The ABC of taxis in reinforced random walks. SIAM J. Appl. Math., 57 (1997), 1044-1081. 
  26. Z.A. Wang, T. Hillen. Classical solutions and pattern formation for a volume filling chemotaxis model. Chaos., 17 (2007), 037108, 13 pages.  
  27. S.S. Willard, P.N. Devreotes. Signalling pathways mediating chemotaxis in the social amoeba, dictyostelium discoideum. Euro. J. Cell. Biol., 85 (2006), 897-904. 
  28. D. Wrzosek. Global attractor for a chemotaxis model with prevention of overcrowding. Nonlinear Analysis., 59 (2004), 1293-1310. 
  29. D. Wrzosek. Long time behavior of solutions to a chemotaxis model with volume filling effects. Proc. R. Soc. Edinburgh A: Math., 136 (2006), 431-444. 
  30. D. Wrzosek. Model of chemotaxis with threshold density and singular diffusion. Nonlinear Anal. TMA, DOI:.  URI10.1016/j.na.2010.02.047, 2010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.