On Chemotaxis Models with Cell Population Interactions
Mathematical Modelling of Natural Phenomena (2010)
- Volume: 5, Issue: 3, page 173-190
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topWang, Z. A.. "On Chemotaxis Models with Cell Population Interactions." Mathematical Modelling of Natural Phenomena 5.3 (2010): 173-190. <http://eudml.org/doc/197722>.
@article{Wang2010,
abstract = {This paper extends the volume filling chemotaxis model [18, 26] by taking into account the cell population interactions. The
extended chemotaxis models have nonlinear diffusion and chemotactic sensitivity depending
on cell population density, which is a modification of the classical Keller-Segel model in
which the diffusion and chemotactic sensitivity are constants (linear). The existence and
boundedness of global solutions of these models are discussed and the numerical pattern
formations are shown. The further improvement is proposed in the end.},
author = {Wang, Z. A.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {chemotaxis; Keller-Segel model; cell interactions; nonlinear diffusion; blow up; volume filling; chemotactic sensitivity; pattern formation},
language = {eng},
month = {4},
number = {3},
pages = {173-190},
publisher = {EDP Sciences},
title = {On Chemotaxis Models with Cell Population Interactions},
url = {http://eudml.org/doc/197722},
volume = {5},
year = {2010},
}
TY - JOUR
AU - Wang, Z. A.
TI - On Chemotaxis Models with Cell Population Interactions
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/4//
PB - EDP Sciences
VL - 5
IS - 3
SP - 173
EP - 190
AB - This paper extends the volume filling chemotaxis model [18, 26] by taking into account the cell population interactions. The
extended chemotaxis models have nonlinear diffusion and chemotactic sensitivity depending
on cell population density, which is a modification of the classical Keller-Segel model in
which the diffusion and chemotactic sensitivity are constants (linear). The existence and
boundedness of global solutions of these models are discussed and the numerical pattern
formations are shown. The further improvement is proposed in the end.
LA - eng
KW - chemotaxis; Keller-Segel model; cell interactions; nonlinear diffusion; blow up; volume filling; chemotactic sensitivity; pattern formation
UR - http://eudml.org/doc/197722
ER -
References
top- P.H. Chavanis. A stochastic keller-segel model of chemotaxis. Commun. Nonlinear Sci Numer Simulat. 15 (2010), 60-70.
- Y.Z. Choi, Z.A. Wang. Prevention of blow up by fast diffusion in chemotaxis., J. Math. Anal. Appl., 362 (2010), 553-564.
- D. Kaiser. Cell-cell interactions. Prokaryotes, 1 (2006), 221-245.
- M. Eisenbach. Chemotaxis. Imperial College Press, London, 2004.
- T. Hillen, K. Painter. A users guide to PDE models for chemotaxis. J. Math. Biol., 57 (2009), 183-217.
- T. Hillen, K. Painter. Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math., 26 (2001), 280-301.
- T. Höfer, J.A. Sherratt, P.K. Maini. Dictyostelium discoideum: cellular self-organisation in an excitable biological medium. Proc. R. Soc. Lond. B., 259 (1995), 249-257.
- D. Hortsmann. From 1970 until present: the keller-segel model in chemotaxis and its consequences: I. Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.
- D. Hortsmann. From 1970 until present: the keller-segel model in chemotaxis and its consequences: II. Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69.
- E.F. Keller, L.A. Segel. Initiation of slime mold aggregation viewd as an instability. J. Theor. Biol., 26 (1970), 399-415.
- H. Kuiper, L. Dung. Global attractors for cross-diffusion systems on domains of arbitrary dimensions. Rocky Mountain J. Math., 37 (2007), No 5, 1645-1668.
- P. Laurençot, D. Wrzosek. A chemotaxis model with threshold density and degenerate diffusion. In: Progress in Nonlinear Diffusion Equations and Their Application., 64 (2005): 273-290.
- P.M. Lushnikov, N. Chen, M. Alber. Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. Phys. Rev. E., 78 (2008), 061904.
- J. Murray, Mathematical biology: an introduction. Third edition, Springer, 2002.
- S. Childress, J.K Percus. Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217-237.
- T. Kowalczyk. Preventing blow-up in a chemotaxis model. J. Math. Anal. Appl., 305 (2005), 566-588.
- W.I. Neuman. The long-time behavior of the solution to a non-linear diffusion problem in population genetics and combustion. J. Theor. Biol., 104 (1985), 472-484.
- P. Painter, T. Hillen. Volume-filling and quorum-sensing in models for chemosensitive move- ment. Can. Appl. Math. Quart., 10 (2002), No 4, 501-543.
- K. Painter, J. A. Sherratt. Modelling the movement of interacting cell populations. J. Theor. Biol., 225 (2003), 327-339.
- B. Perthame. Transport equations in biology. Birkhäuser, Basel, 2007.
- Peter Pivonka.Personal communication. 2009.
- A. Okubo, Diffusion and Ecological problems: Mathematical Models. Springer-Verlag, Berlin-Heidelberg-New York, 1980.
- A. Okubo. Dynamical aspects of animal grouping: swarms, schools, flocks and herds. Adv. Biophys., 22 (1986), 1-94.
- N. Shigesada, K. Kawasaki. Biological Invasions: Theory and Practice. Oxford University Press, Oxford, 1997.
- H.G. Othmer, A. Stevens. Aggregation, blowup and collapse: The ABC of taxis in reinforced random walks. SIAM J. Appl. Math., 57 (1997), 1044-1081.
- Z.A. Wang, T. Hillen. Classical solutions and pattern formation for a volume filling chemotaxis model. Chaos., 17 (2007), 037108, 13 pages.
- S.S. Willard, P.N. Devreotes. Signalling pathways mediating chemotaxis in the social amoeba, dictyostelium discoideum. Euro. J. Cell. Biol., 85 (2006), 897-904.
- D. Wrzosek. Global attractor for a chemotaxis model with prevention of overcrowding. Nonlinear Analysis., 59 (2004), 1293-1310.
- D. Wrzosek. Long time behavior of solutions to a chemotaxis model with volume filling effects. Proc. R. Soc. Edinburgh A: Math., 136 (2006), 431-444.
- D. Wrzosek. Model of chemotaxis with threshold density and singular diffusion. Nonlinear Anal. TMA, DOI:. URI10.1016/j.na.2010.02.047, 2010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.