Evaluation effective du nombre d'entiers n tels que φ(n) ≤ x
Acta Arithmetica (1992)
- Volume: 61, Issue: 2, page 143-159
 - ISSN: 0065-1036
 
Access Full Article
topHow to cite
topA. Smati. "Evaluation effective du nombre d'entiers n tels que φ(n) ≤ x." Acta Arithmetica 61.2 (1992): 143-159. <http://eudml.org/doc/206457>.
@article{A1992,
	author = {A. Smati},
	journal = {Acta Arithmetica},
	keywords = {Euler phi-function; elementary method},
	language = {fre},
	number = {2},
	pages = {143-159},
	title = {Evaluation effective du nombre d'entiers n tels que φ(n) ≤ x},
	url = {http://eudml.org/doc/206457},
	volume = {61},
	year = {1992},
}
TY  - JOUR
AU  - A. Smati
TI  - Evaluation effective du nombre d'entiers n tels que φ(n) ≤ x
JO  - Acta Arithmetica
PY  - 1992
VL  - 61
IS  - 2
SP  - 143
EP  - 159
LA  - fre
KW  - Euler phi-function; elementary method
UR  - http://eudml.org/doc/206457
ER  - 
References
top- [1] M. Balazard and A. Smati, Elementary proof of a theorem of Bateman, dans : Analytic Number Theory, Proc. Conf. in Honor of Paul T. Bateman, Allerton Park, Ill., 1989, Progr. Math. 85, Birkhäuser, Boston 1990, 41-46.
 - [2] P. T. Bateman, The distribution of values of the Euler function, Acta Arith. 21 (1972), 329-345. Zbl0217.31901
 - [3] R. E. Dressler, A density which counts multiplicity, Pacific J. Math. 34 (1970), 371-378. Zbl0181.05302
 - [4] P. Erdős, Some remarks on Euler's ϕ-function and some related problems, Bull. Amer. Math. Soc. 51 (1945), 540-544. Zbl0061.08005
 - [5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford 1979. Zbl0423.10001
 - [6] J.-L. Nicolas, Distribution des valeurs de la fonction d'Euler, Enseign. Math. 30 (1984), 331-338. Zbl0553.10036
 - [7] D. P. Parent, Exercises de théorie des nombres, Gauthier-Villars, Paris 1978.
 - [8] H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhäuser, 1985. Zbl0582.10001
 - [9] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. Zbl0122.05001
 - [10] A. Smati, Répartition des valeurs de la fonction d'Euler, Enseign. Math. 35 (1989), 61-76. Zbl0684.10002
 - [11] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. Elie Cartan 13, Université de Nancy, 1990
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.