K-nombres de Pisot et de Salem

M. J. Bertin

Acta Arithmetica (1994)

  • Volume: 68, Issue: 2, page 113-131
  • ISSN: 0065-1036

How to cite

top

M. J. Bertin. "K-nombres de Pisot et de Salem." Acta Arithmetica 68.2 (1994): 113-131. <http://eudml.org/doc/206648>.

@article{M1994,
author = {M. J. Bertin},
journal = {Acta Arithmetica},
keywords = {totally real fields; algebraic integer; -Salem number; -Pisot numbers; real quadratic fields; small Mahler measure},
language = {fre},
number = {2},
pages = {113-131},
title = {K-nombres de Pisot et de Salem},
url = {http://eudml.org/doc/206648},
volume = {68},
year = {1994},
}

TY - JOUR
AU - M. J. Bertin
TI - K-nombres de Pisot et de Salem
JO - Acta Arithmetica
PY - 1994
VL - 68
IS - 2
SP - 113
EP - 131
LA - fre
KW - totally real fields; algebraic integer; -Salem number; -Pisot numbers; real quadratic fields; small Mahler measure
UR - http://eudml.org/doc/206648
ER -

References

top
  1. [1] A.-M. Bergé et J. Martinet, Notions relatives de régulateurs et de hauteurs, Acta Arith. 54 (1989), 155-170. Zbl0642.12011
  2. [2] M. J. Bertin, Hauteurs et nombres de Pisot relatifs, Groupe d'étude en théorie analytique des nombres, Paris, 1990. 
  3. [3] M. J. Bertin, K-nombres de Pisot et de Salem, dans : Advances in Number Theory, F. Gouvêa and N. Yui (eds.), Oxford Science Publications, 1993, 391-397. 
  4. [4] D. W. Boyd, Reciprocal polynomials having small measure, Math. Comp. 35 (1980), 1361-1377 Zbl0447.12002
  5. [5] D. W. Boyd, Inverse problems for Mahler's measure, dans: London Math. Soc. Lecture Note Ser. 109, Cambridge Univ. Press, 1986, 147-158. 
  6. [6] Ch. Chamfy, Fonctions méromorphes dans le cercle-unité et leurs séries de Taylor, Ann. Inst. Fourier (Grenoble) 8 (1958), 211-261. Zbl0087.07603
  7. [7] J. Dufresnoy et Ch. Pisot, Etude de certaines fonctions méromorphes bornées sur le cercle unité. Application à un ensemble fermé d'entiers algébriques, Ann. Sci. École Norm. Sup. (3) 72 (1955), 69-92. Zbl0064.03703
  8. [8] Ch. Pisot, Répartition (mod 1) des puissances successives des nombres réels, Comment. Math. Helv. 19 (1947), 153-160. Zbl0063.06259

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.