Rank zero quadratic twists of modular elliptic curves

Ken Ono

Compositio Mathematica (1996)

  • Volume: 104, Issue: 3, page 293-304
  • ISSN: 0010-437X

How to cite


Ono, Ken. "Rank zero quadratic twists of modular elliptic curves." Compositio Mathematica 104.3 (1996): 293-304. <http://eudml.org/doc/90491>.

author = {Ono, Ken},
journal = {Compositio Mathematica},
keywords = {modular form; non-congruent numbers; modular elliptic curve; quadratic twists; Mordell-Weil rank zero; arithmetic progressions; Shimura correspondence},
language = {eng},
number = {3},
pages = {293-304},
publisher = {Kluwer Academic Publishers},
title = {Rank zero quadratic twists of modular elliptic curves},
url = {http://eudml.org/doc/90491},
volume = {104},
year = {1996},

AU - Ono, Ken
TI - Rank zero quadratic twists of modular elliptic curves
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 104
IS - 3
SP - 293
EP - 304
LA - eng
KW - modular form; non-congruent numbers; modular elliptic curve; quadratic twists; Mordell-Weil rank zero; arithmetic progressions; Shimura correspondence
UR - http://eudml.org/doc/90491
ER -


  1. 1 Bump, D., Friedberg, S. and Hoffstein J.: Nonvanishing theorems for L-functions of modular fomrs and their derivatives, Inventiones Math.102 (1990), 543-618. Zbl0721.11023MR1074487
  2. 2 Deligne, P.: La conjecture de Weil I, Publ. Math. I.H.E.S.43 (1974), 273-307. Zbl0287.14001MR340258
  3. 3 Diamond, F. and Kramer, K.: Modularity of a family of elliptic curves, Math. Research Letters (2)(3) (1995), 299-304. Zbl0867.11041MR1338788
  4. 4 Gouvêa, F. and Mazur, B.: The square-free sieve and the rank of elliptic curves, J. Amer. Math. Soc.4 (1991), 1-23. Zbl0725.11027MR1080648
  5. 5 Husemöller, D.: Elliptic curves, Springer-Verlag, New York, 1987. Zbl0605.14032MR868861
  6. 6 Knapp, A.: Elliptic curves, Princeton Univ. Press, 1992. Zbl0804.14013MR1193029
  7. 7 Koblitz, N.: Introduction to elliptic curves and modular forms, Springer-Verlag, 1984. Zbl0553.10019MR766911
  8. 8 Kohnen, W.: A remark on the Shimura correspondence, Glasgow Math. J.30 (1988), 285-291. Zbl0659.10024MR964575
  9. 9 Kolyvagin, V.A.: Finiteness of E(Q) and the Tate-Shafarevich group of E(Q) for a subclass of Weil curves (Russian), Izv. Akad. Nauk, USSR, ser. Matem. 52 (1988). Zbl0662.14017
  10. 10 Lieman, D.: Nonvanishing of L-series associated to cubic twists of elliptic curves, Jour Annals of Math.40 (1994), 81-108. Zbl0817.11029MR1289492
  11. 11 Mai, L. and Murty, M.R.: A note on quadratric twists of an elliptic curve, Elliptic curves and related topics, Ed. H. Kisilevsky and M. R. Murty, Amer. Math. Soc. [CRM Proceedings and Lecture Notes] (1994), 121-124. Zbl0806.14025MR1260959
  12. 12 Murty, M.R. and Murty, V.K.: Mean values of derivatives of modular L-series, Annals of Math.133 (1991) 447-475. Zbl0745.11032MR1109350
  13. 13 Ono, K.: Euler's concordant forms, Acta. Arith., to appear. Zbl0863.11038
  14. 14 Silverman, J.: The arithmetic of elliptic curves, Springer-Verlag, New York, 1986. Zbl0585.14026MR817210
  15. 15 Shimura, G.: On modular forms of half-integral weight, Annals of Math.97 (1973), 440-481. Zbl0266.10022MR332663
  16. 16 Stewart, C.L. and Top, J.: On ranks of twists of elliptic curves and power-free values of binary forms, preprint. Zbl0857.11026
  17. 17 Tunnell, J.: A classical Diophantine problem and modular forms of weight 3/2, Inventiones Math.72 (1983), 323-334. Zbl0515.10013MR700775
  18. 18 Vignéras, M.-F.: Facteurs gamma et equations fonctionelles, Springer Lect. in Math.627 (1977), 79-103. Zbl0373.10027MR485739
  19. 19 Waldspurger, J.L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures et Appl.60 (1981), 375-484. Zbl0431.10015MR646366
  20. 20 Wiles, A.: Modular elliptic curves and Fermat's Last Theorem, Ann. Math.141(3) (1995), 443-551. Zbl0823.11029MR1333035

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.