The distribution of the eigenvalues of Hecke operators

J. B. Conrey; W. Duke; D. W. Farmer

Acta Arithmetica (1997)

  • Volume: 78, Issue: 4, page 405-409
  • ISSN: 0065-1036

How to cite

top

J. B. Conrey, W. Duke, and D. W. Farmer. "The distribution of the eigenvalues of Hecke operators." Acta Arithmetica 78.4 (1997): 405-409. <http://eudml.org/doc/206959>.

@article{J1997,
author = {J. B. Conrey, W. Duke, D. W. Farmer},
journal = {Acta Arithmetica},
keywords = {Sato-Tate conjecture; Fourier coefficients of Hecke eigenforms; modular group; uniformly distributed angles; Selberg trace formula},
language = {eng},
number = {4},
pages = {405-409},
title = {The distribution of the eigenvalues of Hecke operators},
url = {http://eudml.org/doc/206959},
volume = {78},
year = {1997},
}

TY - JOUR
AU - J. B. Conrey
AU - W. Duke
AU - D. W. Farmer
TI - The distribution of the eigenvalues of Hecke operators
JO - Acta Arithmetica
PY - 1997
VL - 78
IS - 4
SP - 405
EP - 409
LA - eng
KW - Sato-Tate conjecture; Fourier coefficients of Hecke eigenforms; modular group; uniformly distributed angles; Selberg trace formula
UR - http://eudml.org/doc/206959
ER -

References

top
  1. [A] A. Adolphson, On the distribution of angles of Kloosterman sums, J. Reine Angew. Math. 395 (1989), 214-220. Zbl0682.40002
  2. [B] B. J. Birch, How the number of points of an elliptic curve over a fixed prime field varies, J. London Math. Soc. 43 (1968), 57-60. Zbl0183.25503
  3. [K] N. M. Katz, Gauss Sums, Kloosterman Sums, and Monodromy Groups, Ann. of Math. Stud. 116, Princeton, 1988. Zbl0675.14004
  4. [L] R. Livné, The average distribution of cubic exponential sums, J. Reine Angew. Math. 375/376 (1987), 362-379. Zbl0602.10027
  5. [LPS] A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), 261-277. Zbl0661.05035
  6. [Mic] P. Michel, Autour de la conjecture de Sato-Tate pour les sommes de Kloosterman I, Invent. Math. 121 (1995), 61-78. 
  7. [Mur] V. K. Murty, On the Sato-Tate conjecture, in: Number Theory Related to Fermat's Last Theorem, Progr. Math. 26, Birkhäuser, Boston, 1981, 195-205. 
  8. [Ogg] A. P. Ogg, A remark on the Sato-Tate conjecture, Invent. Math. 9 (1970), 198-200. Zbl0219.14013
  9. [Sar] P. Sarnak, Statistical properties of eigenvalues of the Hecke operators, in: Analytic Number Theory and Diophantine Problems (Stillwater, OK, 1984), Progr. Math. 70, Birkhäuser, Boston, 1987, 321-331. 
  10. [Sel] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. B 20 (1956), 47-87; reprinted in: Collected Papers, Vol. I, Springer, Berlin, 1989, 423-463. Zbl0072.08201
  11. [Ser] J.-P. Serre, Abelian l-adic Representations and Elliptic Curves, Benjamin, New York, 1968. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.