Ergodic properties of an operator obtained from a continuous representation

Michael Lin

Annales de l'I.H.P. Probabilités et statistiques (1977)

  • Volume: 13, Issue: 4, page 321-331
  • ISSN: 0246-0203

How to cite

top

Lin, Michael. "Ergodic properties of an operator obtained from a continuous representation." Annales de l'I.H.P. Probabilités et statistiques 13.4 (1977): 321-331. <http://eudml.org/doc/77071>.

@article{Lin1977,
author = {Lin, Michael},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {4},
pages = {321-331},
publisher = {Gauthier-Villars},
title = {Ergodic properties of an operator obtained from a continuous representation},
url = {http://eudml.org/doc/77071},
volume = {13},
year = {1977},
}

TY - JOUR
AU - Lin, Michael
TI - Ergodic properties of an operator obtained from a continuous representation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1977
PB - Gauthier-Villars
VL - 13
IS - 4
SP - 321
EP - 331
LA - eng
UR - http://eudml.org/doc/77071
ER -

References

top
  1. [1] G. Choquet and J. Deny, Sur l'équation de convolution μ = μ * σ. C. R. Acad. Sci. Paris, t. 250, 1960, p. 799-801. Zbl0093.12802MR119041
  2. [2] Y. Derriennic, Lois « zéro on deux » pour les processus de Markov. Applications aux marches aléatoires. Ann. Inst. H. Poincaré B, XII, 1976, p. 111-130. Zbl0353.60075MR423532
  3. [3] N. Dunford and J. Schwartz, Linear operators. Part I. Interscience, New York, 1958. Zbl0084.10402MR117523
  4. [4] M. Falkowitz, On finite invariant measures for Markov operators. Proc. Amer. Math. Soc., t. 38, 1973, p. 553-557. Zbl0276.47005MR312318
  5. [5] S.R. Foguel, Convergence of the iterates of an operator. Israel J. Math., t. 16, 1973, p. 159-161. Zbl0272.47023MR341178
  6. [6] S.R. Foguel, Convergence of the iterates of convolutions. To appear. MR374816
  7. [7] S.R. Foguel, Iterates of a convolution on a non-Abelian group. Ann. Inst. H. Poincaré B, XI, 1975, p. 199-202. Zbl0312.60004MR400332
  8. [8] S.R. Foguel and B. Weiss, On convex power series of a conservative Markov operator. Proc. Amer. Math. Soc., t. 38, 1973, p. 325-330. Zbl0268.47014MR313476
  9. [9] M. Lin, Mixing for Markov operators. Z. Wahrscheinlichkeitstheorie, t. 29, 1971, p. 231-242. Zbl0212.49301MR309207
  10. [10] M. Lin, On the uniform ergodic theorem II. Proc. Amer. Math. Soc., t. 46, 1974, p. 217-225. Zbl0291.47006MR417822
  11. [11] A. Mukherjea, Limit theorems for probability measures on non-compact groups and semi-groups. Z. Wahrscheinlichkeitstheorie, t. 33, 1976, p. 273-284. Zbl0304.60004MR400334
  12. [12] R. Sine, A note on the ergodic properties of homeomorphisms. Proc. Amer. Math. Soc., t. 57, 1976, p. 169-172. Zbl0333.54027MR402706
  13. [13] A. Mukherjea and N. Tserpes, Probability measures on locally compact groups and semi-groups. Springer lecture notes in Mathematics, Berlin-Heidelberg, 1976. Zbl0342.43001MR467871

Citations in EuDML Documents

top
  1. Yves Derriennic, Sur le théorème de point fixe de Brunel et le théorème de Choquet-Deny
  2. Y. Derriennic, M. Lin, Sur le comportement asymptotique des puissances de convolution d'une probabilité
  3. J. B. Conrey, W. Duke, D. W. Farmer, The distribution of the eigenvalues of Hecke operators
  4. Michael Lin, Rainer Wittmann, Averages of unitary representations and weak mixing of random walks
  5. Emmanuel Royer, Jie Wu, Special values of symmetric power L -functions and Hecke eigenvalues

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.