Facteurs -simples de de grande dimension et de grand rang
Bulletin de la Société Mathématique de France (2000)
- Volume: 128, Issue: 2, page 219-248
- ISSN: 0037-9484
Access Full Article
topHow to cite
topRoyer, Emmanuel. "Facteurs $\mathbb {Q}$-simples de $J_{0}(N)$ de grande dimension et de grand rang." Bulletin de la Société Mathématique de France 128.2 (2000): 219-248. <http://eudml.org/doc/87827>.
@article{Royer2000,
author = {Royer, Emmanuel},
journal = {Bulletin de la Société Mathématique de France},
keywords = {modular forms; Hecke-operators; L-series; trace-formula; Jacobian},
language = {fre},
number = {2},
pages = {219-248},
publisher = {Société mathématique de France},
title = {Facteurs $\mathbb \{Q\}$-simples de $J_\{0\}(N)$ de grande dimension et de grand rang},
url = {http://eudml.org/doc/87827},
volume = {128},
year = {2000},
}
TY - JOUR
AU - Royer, Emmanuel
TI - Facteurs $\mathbb {Q}$-simples de $J_{0}(N)$ de grande dimension et de grand rang
JO - Bulletin de la Société Mathématique de France
PY - 2000
PB - Société mathématique de France
VL - 128
IS - 2
SP - 219
EP - 248
LA - fre
KW - modular forms; Hecke-operators; L-series; trace-formula; Jacobian
UR - http://eudml.org/doc/87827
ER -
References
top- [1] BRUMER (A.). — The Rank of J0(N), Astérisque 228, 1995, p. 41-68. Zbl0851.11035MR96f:11083
- [2] CONREY (J.), DUKE (W.), FARMER (D.W.). — The distribution of the eigenvalues of Hecke operators, Acta Arithmetica, t. 78, 4, 1997, p. 405-409. Zbl0876.11020MR98k:11047
- [3] CORNELL (G.), SILVERMAN (J.H.) (eds). — Modular Forms and Fermat's Last Theorem. — Springer-Verlag, Berlin Heidelberg New-York, 1997. Zbl0878.11004MR99k:11004
- [4] DIAMOND (F.), IM (J.). — Modular forms and modular curves, in Fermat Last Theorem, Canadian Math. Soc., 1995, p. 39-133. Zbl0853.11032MR97g:11044
- [5] DUBICKAS (A.), KONYAGIN (S.V.). — On the number of polynomials of bounded measure, Acta Arithmetica, t. 86, n° 4, 1998, p. 325-342. Zbl0926.11080MR99m:11122
- [6] GAMBURD (A.), JAKOBSON (D.), SARNAK (P.). — Spectra of elements in the group ring of SU(2), J. Europ. Math. Soc., t. 1, 1999, p. 1-35. Zbl0916.22009MR2000e:11102
- [7] GUO (J.). — On the positivity of the central critical values of automorphic L-functions for GL(2), Duke Math. J., t. 83, 1996, p. 157-190. Zbl0861.11032MR97h:11055
- [8] GROSS (B.H.), ZAGIER (D.B.). — Heegner points and derivatives L-series, Inventiones Math., t. 84, 1986, p. 225-320. Zbl0608.14019MR87j:11057
- [9] IWANIEC (H.), SARNAK (P.). — The non-vanishing of central values of automorphic L-functions and Landau-Siegel zeros, Preprint, 1997.
- [10] IWANIEC (H.). — Topics in Classical Automorphic Forms, Graduate Studies in Math., vol. 17, Amer. Math. Soc., 1997. Zbl0905.11023MR98e:11051
- [11] KOWALSKI (E.), MICHEL (P.). — A lower bound for the rank of J0(q), Prépublication, Université Paris-Sud, t. 97, n° 69, 1997.
- [12] KOWALSKI (E.), MICHEL (P.). — Sur les zéros des fonctions L de formes automorphes, Prépublication, Université Paris-Sud, t. 97, n° 54, 1997.
- [13] KOWALSKI (E.), MICHEL (P.). — The analytic rank of J0(q) and zeros of automorphic L-functions, Duke Math. J., à paraître. Zbl1161.11359
- [14] KOHNEN (W.). — Fourier Coefficients of Modular Forms of Half-Integral Weight, Math. Annalen, t. 271, n° 2, 1985, p. 237-268. Zbl0542.10018MR86i:11018
- [15] KOWALSKI (E.). — The rank of the jacobians of modular curves: analytic methods, Thesis, Rutgers University, disponible sur http://www.princeton.edu/˜ekowalsk/These/these.html, 1998.
- [16] RIVLIN (T.J.). — Chebyshev Polynomials: from Approximation Theory to Algebra and Number Theory, 2e éd. — Pure and Applied Mathematics, Wiley-Interscience, New York, 1990. Zbl0734.41029
- [17] ROHRLICH (D.E.). — Non vanishing of L-functions for GL(2), Inventiones Math., t. 97, 1989, p. 381-403. Zbl0677.10020MR90g:11062
- [18] ROHRLICH (D.E.). — Modular Curves, Hecke Correspondences, and L-functions, in Cornell and Silvermann [3], chap. 3, 1997, p. 41-100. Zbl0897.11019MR1638476
- [19] SERRE (J.-P.). — Répartition asymptotique des valeurs propres de l'opérateur de Hecke Tp, J. Amer. Math. Soc., t. 10, n° 1, 1997, p. 75-102. Zbl0871.11032MR97h:11048
- [20] TENENBAUM (G.). — Introduction à la théorie analytique et probabiliste des nombres. — Cours spécialisés, vol. 1, Soc. Math. France, 1995. Zbl0880.11001MR97e:11005a
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.