Facteurs -simples de J 0 ( N ) de grande dimension et de grand rang

Emmanuel Royer

Bulletin de la Société Mathématique de France (2000)

  • Volume: 128, Issue: 2, page 219-248
  • ISSN: 0037-9484

How to cite

top

Royer, Emmanuel. "Facteurs $\mathbb {Q}$-simples de $J_{0}(N)$ de grande dimension et de grand rang." Bulletin de la Société Mathématique de France 128.2 (2000): 219-248. <http://eudml.org/doc/87827>.

@article{Royer2000,
author = {Royer, Emmanuel},
journal = {Bulletin de la Société Mathématique de France},
keywords = {modular forms; Hecke-operators; L-series; trace-formula; Jacobian},
language = {fre},
number = {2},
pages = {219-248},
publisher = {Société mathématique de France},
title = {Facteurs $\mathbb \{Q\}$-simples de $J_\{0\}(N)$ de grande dimension et de grand rang},
url = {http://eudml.org/doc/87827},
volume = {128},
year = {2000},
}

TY - JOUR
AU - Royer, Emmanuel
TI - Facteurs $\mathbb {Q}$-simples de $J_{0}(N)$ de grande dimension et de grand rang
JO - Bulletin de la Société Mathématique de France
PY - 2000
PB - Société mathématique de France
VL - 128
IS - 2
SP - 219
EP - 248
LA - fre
KW - modular forms; Hecke-operators; L-series; trace-formula; Jacobian
UR - http://eudml.org/doc/87827
ER -

References

top
  1. [1] BRUMER (A.). — The Rank of J0(N), Astérisque 228, 1995, p. 41-68. Zbl0851.11035MR96f:11083
  2. [2] CONREY (J.), DUKE (W.), FARMER (D.W.). — The distribution of the eigenvalues of Hecke operators, Acta Arithmetica, t. 78, 4, 1997, p. 405-409. Zbl0876.11020MR98k:11047
  3. [3] CORNELL (G.), SILVERMAN (J.H.) (eds). — Modular Forms and Fermat's Last Theorem. — Springer-Verlag, Berlin Heidelberg New-York, 1997. Zbl0878.11004MR99k:11004
  4. [4] DIAMOND (F.), IM (J.). — Modular forms and modular curves, in Fermat Last Theorem, Canadian Math. Soc., 1995, p. 39-133. Zbl0853.11032MR97g:11044
  5. [5] DUBICKAS (A.), KONYAGIN (S.V.). — On the number of polynomials of bounded measure, Acta Arithmetica, t. 86, n° 4, 1998, p. 325-342. Zbl0926.11080MR99m:11122
  6. [6] GAMBURD (A.), JAKOBSON (D.), SARNAK (P.). — Spectra of elements in the group ring of SU(2), J. Europ. Math. Soc., t. 1, 1999, p. 1-35. Zbl0916.22009MR2000e:11102
  7. [7] GUO (J.). — On the positivity of the central critical values of automorphic L-functions for GL(2), Duke Math. J., t. 83, 1996, p. 157-190. Zbl0861.11032MR97h:11055
  8. [8] GROSS (B.H.), ZAGIER (D.B.). — Heegner points and derivatives L-series, Inventiones Math., t. 84, 1986, p. 225-320. Zbl0608.14019MR87j:11057
  9. [9] IWANIEC (H.), SARNAK (P.). — The non-vanishing of central values of automorphic L-functions and Landau-Siegel zeros, Preprint, 1997. 
  10. [10] IWANIEC (H.). — Topics in Classical Automorphic Forms, Graduate Studies in Math., vol. 17, Amer. Math. Soc., 1997. Zbl0905.11023MR98e:11051
  11. [11] KOWALSKI (E.), MICHEL (P.). — A lower bound for the rank of J0(q), Prépublication, Université Paris-Sud, t. 97, n° 69, 1997. 
  12. [12] KOWALSKI (E.), MICHEL (P.). — Sur les zéros des fonctions L de formes automorphes, Prépublication, Université Paris-Sud, t. 97, n° 54, 1997. 
  13. [13] KOWALSKI (E.), MICHEL (P.). — The analytic rank of J0(q) and zeros of automorphic L-functions, Duke Math. J., à paraître. Zbl1161.11359
  14. [14] KOHNEN (W.). — Fourier Coefficients of Modular Forms of Half-Integral Weight, Math. Annalen, t. 271, n° 2, 1985, p. 237-268. Zbl0542.10018MR86i:11018
  15. [15] KOWALSKI (E.). — The rank of the jacobians of modular curves: analytic methods, Thesis, Rutgers University, disponible sur http://www.princeton.edu/˜ekowalsk/These/these.html, 1998. 
  16. [16] RIVLIN (T.J.). — Chebyshev Polynomials: from Approximation Theory to Algebra and Number Theory, 2e éd. — Pure and Applied Mathematics, Wiley-Interscience, New York, 1990. Zbl0734.41029
  17. [17] ROHRLICH (D.E.). — Non vanishing of L-functions for GL(2), Inventiones Math., t. 97, 1989, p. 381-403. Zbl0677.10020MR90g:11062
  18. [18] ROHRLICH (D.E.). — Modular Curves, Hecke Correspondences, and L-functions, in Cornell and Silvermann [3], chap. 3, 1997, p. 41-100. Zbl0897.11019MR1638476
  19. [19] SERRE (J.-P.). — Répartition asymptotique des valeurs propres de l'opérateur de Hecke Tp, J. Amer. Math. Soc., t. 10, n° 1, 1997, p. 75-102. Zbl0871.11032MR97h:11048
  20. [20] TENENBAUM (G.). — Introduction à la théorie analytique et probabiliste des nombres. — Cours spécialisés, vol. 1, Soc. Math. France, 1995. Zbl0880.11001MR97e:11005a

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.