4-core partitions and class numbers
Acta Arithmetica (1997)
- Volume: 80, Issue: 3, page 249-272
- ISSN: 0065-1036
Access Full Article
topHow to cite
topKen Ono, and Lawrence Sze. "4-core partitions and class numbers." Acta Arithmetica 80.3 (1997): 249-272. <http://eudml.org/doc/207041>.
@article{KenOno1997,
author = {Ken Ono, Lawrence Sze},
journal = {Acta Arithmetica},
keywords = {4-core partitions; class numbers; 4-core partition; hook numbers; Ferrers-Young diagram; number of r-defect zero unipotent characters of GL(n,q); class number; binary quadratic forms},
language = {eng},
number = {3},
pages = {249-272},
title = {4-core partitions and class numbers},
url = {http://eudml.org/doc/207041},
volume = {80},
year = {1997},
}
TY - JOUR
AU - Ken Ono
AU - Lawrence Sze
TI - 4-core partitions and class numbers
JO - Acta Arithmetica
PY - 1997
VL - 80
IS - 3
SP - 249
EP - 272
LA - eng
KW - 4-core partitions; class numbers; 4-core partition; hook numbers; Ferrers-Young diagram; number of r-defect zero unipotent characters of GL(n,q); class number; binary quadratic forms
UR - http://eudml.org/doc/207041
ER -
References
top- [1] G. Andrews, The Theory of Partitions, Addison-Wesley, 1976. Zbl0371.10001
- [2] G. Andrews, C. Bessenrodt and J. Olsson, Partition identities and labels for some modular characters, Trans. Amer. Math. Soc. 344 (1994), 597-615. Zbl0806.05065
- [3] G. Andrews and F. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc. 18 (1988), 167-171. Zbl0646.10008
- [4] A. O. L. Atkin and P. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954), 84-106. Zbl0055.03805
- [5] Z. Borevich and I. Shafarevich, Number Theory, Academic Press, New York, 1966.
- [6] R. Brauer, Representations of Finite Simple Groups, Lecture Notes on Modern Math. 1, Wiley, New York, 1963, 133-175.
- [7] H. Cohen and H. Lenstra, Heuristics on class groups of number fields, in: Lecture Notes in Math. 1068, Springer, New York, 1984, 33-61.
- [8] D. Cox, Primes of the Form x² + ny², Wiley, New York, 1989.
- [9] F. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 10-15.
- [10] K. Erdmann and G. Michler, Blocks for symmetric groups and their covering groups and quadratic forms, Beitr. Algebra Geom. 37 (1996), 103-118. Zbl0894.20014
- [11] P. Fong and B. Srinivasan, The blocks of finite general linear groups and unitary groups, Invent. Math. 69 (1982), 109-153. Zbl0507.20007
- [12] F. Garvan, Some congruence properties for partitions that are p-cores, Proc. London Math. Soc. 66 (1993), 449-478. Zbl0788.11044
- [13] F. Garvan, D. Kim and D. Stanton, Cranks and t-cores, Invent. Math. 101 (1990), 1-17. Zbl0721.11039
- [14] C. F. Gauss, Disquisitiones Arithmeticae, transl. A. A. Clarke, Yale Univ. Press, 1966.
- [15] D. Goldfeld, The class number of quadratic fields and the Birch and Swinnerton-Dyer Conjecture, Ann. Scuola Norm. Sup. Pisa 3 (1976), 623-663. Zbl0345.12007
- [16] A. Granville and K. Ono, Defect zero p-blocks for finite simple groups, Trans. Amer. Math. Soc. 348 (1996), 331-347. Zbl0855.20007
- [17] B. Gross et D. Zagier, Points de Heegner et derivées de fonctions L, C. R. Acad. Sci. Paris 297 (1983), 85-87.
- [18] M. Hirschhorn and J. Sellers, Some amazing facts about 4-cores, J. Number Theory 60 (1996), 51-69. Zbl0864.11050
- [19] M. Hirschhorn and J. Sellers, Two congruences involving 4-cores, Electron. J. Combin. 3 (2) (1996). Zbl0857.05009
- [20] M. Isaacs, Character Theory of Finite Simple Groups, Academic Press, New York, 1976.
- [21] G. James and A. Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley, Reading, 1979.
- [22] B. Jones, The Arithmetic Theory of Quadratic Forms, Carus Math. Monographs 10, Math. Assoc. Amer., Wiley, 1950.
- [23] I. Kiming, A note on a theorem of A. Granville and K. Ono, J. Number Theory 60 (1996), 97-102.
- [24] I. Kiming, On the number of p-spin blocks of defect zero of covering groups of symmetric groups, preprint.
- [25] A. Klyachko, Modular forms and representations of symmetric groups, integral lattices and finite linear groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 116 (1982), 74-85 (in Russian). Zbl0512.10019
- [26] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, New York, 1984. Zbl0553.10019
- [27] J. Oesterlé, Nombre de classes des corps quadratiques imaginaires, Sém. Bourbaki, Astérisque 121-122 (1985), 309-323.
- [28] J. Olsson, Combinatorics and representations of finite groups, Univ. Essen Lect. Notes 20, 1993. Zbl0796.05095
- [29] K. Ono, On the positivity of the number of t-core partitions, Acta Arith. 66 (1994), 221-228. Zbl0793.11027
- [30] K. Ono, A note on the number of t-core partitions, Rocky Mountain J. Math. 25 (1995), 1165-1169. Zbl0852.11055
- [31] K. Ono, Rank zero quadratic twists of modular elliptic curves, Compositio Math. 104 (1996), 293-304. Zbl0876.11025
- [32] K. Ono, Twists of elliptic curves, Compositio Math. to appear.
- [33] G. de Robinson, Representation Theory of the Symmetric Group, Toronto Univ. Press, 1961. Zbl0102.02002
- [34] G. Shimura, On modular forms of half-integral weight, Ann. of Math. 97 (1973), 440-481. Zbl0266.10022
- [35] J. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986. Zbl0585.14026
- [36] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. 60 (1981), 375-484. Zbl0431.10015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.