4-core partitions and class numbers

Ken Ono; Lawrence Sze

Acta Arithmetica (1997)

  • Volume: 80, Issue: 3, page 249-272
  • ISSN: 0065-1036

How to cite

top

Ken Ono, and Lawrence Sze. "4-core partitions and class numbers." Acta Arithmetica 80.3 (1997): 249-272. <http://eudml.org/doc/207041>.

@article{KenOno1997,
author = {Ken Ono, Lawrence Sze},
journal = {Acta Arithmetica},
keywords = {4-core partitions; class numbers; 4-core partition; hook numbers; Ferrers-Young diagram; number of r-defect zero unipotent characters of GL(n,q); class number; binary quadratic forms},
language = {eng},
number = {3},
pages = {249-272},
title = {4-core partitions and class numbers},
url = {http://eudml.org/doc/207041},
volume = {80},
year = {1997},
}

TY - JOUR
AU - Ken Ono
AU - Lawrence Sze
TI - 4-core partitions and class numbers
JO - Acta Arithmetica
PY - 1997
VL - 80
IS - 3
SP - 249
EP - 272
LA - eng
KW - 4-core partitions; class numbers; 4-core partition; hook numbers; Ferrers-Young diagram; number of r-defect zero unipotent characters of GL(n,q); class number; binary quadratic forms
UR - http://eudml.org/doc/207041
ER -

References

top
  1. [1] G. Andrews, The Theory of Partitions, Addison-Wesley, 1976. Zbl0371.10001
  2. [2] G. Andrews, C. Bessenrodt and J. Olsson, Partition identities and labels for some modular characters, Trans. Amer. Math. Soc. 344 (1994), 597-615. Zbl0806.05065
  3. [3] G. Andrews and F. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc. 18 (1988), 167-171. Zbl0646.10008
  4. [4] A. O. L. Atkin and P. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954), 84-106. Zbl0055.03805
  5. [5] Z. Borevich and I. Shafarevich, Number Theory, Academic Press, New York, 1966. 
  6. [6] R. Brauer, Representations of Finite Simple Groups, Lecture Notes on Modern Math. 1, Wiley, New York, 1963, 133-175. 
  7. [7] H. Cohen and H. Lenstra, Heuristics on class groups of number fields, in: Lecture Notes in Math. 1068, Springer, New York, 1984, 33-61. 
  8. [8] D. Cox, Primes of the Form x² + ny², Wiley, New York, 1989. 
  9. [9] F. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 10-15. 
  10. [10] K. Erdmann and G. Michler, Blocks for symmetric groups and their covering groups and quadratic forms, Beitr. Algebra Geom. 37 (1996), 103-118. Zbl0894.20014
  11. [11] P. Fong and B. Srinivasan, The blocks of finite general linear groups and unitary groups, Invent. Math. 69 (1982), 109-153. Zbl0507.20007
  12. [12] F. Garvan, Some congruence properties for partitions that are p-cores, Proc. London Math. Soc. 66 (1993), 449-478. Zbl0788.11044
  13. [13] F. Garvan, D. Kim and D. Stanton, Cranks and t-cores, Invent. Math. 101 (1990), 1-17. Zbl0721.11039
  14. [14] C. F. Gauss, Disquisitiones Arithmeticae, transl. A. A. Clarke, Yale Univ. Press, 1966. 
  15. [15] D. Goldfeld, The class number of quadratic fields and the Birch and Swinnerton-Dyer Conjecture, Ann. Scuola Norm. Sup. Pisa 3 (1976), 623-663. Zbl0345.12007
  16. [16] A. Granville and K. Ono, Defect zero p-blocks for finite simple groups, Trans. Amer. Math. Soc. 348 (1996), 331-347. Zbl0855.20007
  17. [17] B. Gross et D. Zagier, Points de Heegner et derivées de fonctions L, C. R. Acad. Sci. Paris 297 (1983), 85-87. 
  18. [18] M. Hirschhorn and J. Sellers, Some amazing facts about 4-cores, J. Number Theory 60 (1996), 51-69. Zbl0864.11050
  19. [19] M. Hirschhorn and J. Sellers, Two congruences involving 4-cores, Electron. J. Combin. 3 (2) (1996). Zbl0857.05009
  20. [20] M. Isaacs, Character Theory of Finite Simple Groups, Academic Press, New York, 1976. 
  21. [21] G. James and A. Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley, Reading, 1979. 
  22. [22] B. Jones, The Arithmetic Theory of Quadratic Forms, Carus Math. Monographs 10, Math. Assoc. Amer., Wiley, 1950. 
  23. [23] I. Kiming, A note on a theorem of A. Granville and K. Ono, J. Number Theory 60 (1996), 97-102. 
  24. [24] I. Kiming, On the number of p-spin blocks of defect zero of covering groups of symmetric groups, preprint. 
  25. [25] A. Klyachko, Modular forms and representations of symmetric groups, integral lattices and finite linear groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 116 (1982), 74-85 (in Russian). Zbl0512.10019
  26. [26] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, New York, 1984. Zbl0553.10019
  27. [27] J. Oesterlé, Nombre de classes des corps quadratiques imaginaires, Sém. Bourbaki, Astérisque 121-122 (1985), 309-323. 
  28. [28] J. Olsson, Combinatorics and representations of finite groups, Univ. Essen Lect. Notes 20, 1993. Zbl0796.05095
  29. [29] K. Ono, On the positivity of the number of t-core partitions, Acta Arith. 66 (1994), 221-228. Zbl0793.11027
  30. [30] K. Ono, A note on the number of t-core partitions, Rocky Mountain J. Math. 25 (1995), 1165-1169. Zbl0852.11055
  31. [31] K. Ono, Rank zero quadratic twists of modular elliptic curves, Compositio Math. 104 (1996), 293-304. Zbl0876.11025
  32. [32] K. Ono, Twists of elliptic curves, Compositio Math. to appear. 
  33. [33] G. de Robinson, Representation Theory of the Symmetric Group, Toronto Univ. Press, 1961. Zbl0102.02002
  34. [34] G. Shimura, On modular forms of half-integral weight, Ann. of Math. 97 (1973), 440-481. Zbl0266.10022
  35. [35] J. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986. Zbl0585.14026
  36. [36] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. 60 (1981), 375-484. Zbl0431.10015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.