The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1976)
- Volume: 3, Issue: 4, page 623-663
- ISSN: 0391-173X
Access Full Article
topHow to cite
topGoldfeld, Dorian M.. "The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.4 (1976): 623-663. <http://eudml.org/doc/83732>.
@article{Goldfeld1976,
author = {Goldfeld, Dorian M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {623-663},
publisher = {Scuola normale superiore},
title = {The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer},
url = {http://eudml.org/doc/83732},
volume = {3},
year = {1976},
}
TY - JOUR
AU - Goldfeld, Dorian M.
TI - The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1976
PB - Scuola normale superiore
VL - 3
IS - 4
SP - 623
EP - 663
LA - eng
UR - http://eudml.org/doc/83732
ER -
References
top- [1] A. Baker, Linear forms in the logarithms of algebraic numbers, Mathematika, 13 (1966), pp. 204-216. Zbl0161.05201MR258756
- [2] A. Baker, Imaginary quadratic fields with class number two, Annals of Math., 94 (1971), pp. 139-152. Zbl0219.12008MR299583
- [3] B.J. Birch - N.M. Stephens, The parity of the rank of the Mordell-Weil group, Topology, 5 (1966), pp. 295-299. Zbl0146.42401MR201379
- [4] B.J. Birch - H.P.F. Swinnerton-Dyer, Notes on elliptic curves, J. reine angewandte Math., 218 (1965), pp. 79-108. Zbl0147.02506MR179168
- [5] M. Deuring, Die Zetafunktion einer algebraischer Kurve von Geschlechte Eins, I, II, III, IV, Nachr. Akad. Wiss.Göttingen (1953), pp. 85-94; (1954), pp. 13-42; (1956), pp. 37-76; (1957), pp. 55-80.
- [6] D.M. Goldfeld, An asymptotic formula relating the Siegel zero and the class number of quadratic fields, Annali Scuola Normale Superiore, Serie IV, 2 (1975), pp. 611-615. Zbl0327.10042MR404212
- [7] D.M. Goldfeld, A simple proof of Siegel's theorem, Proc. Nat. Acad. Sciences U.S.A., 71 (1974), pp. 1055. Zbl0287.12019MR344222
- [8] D.M. Goldfeld - S. Chowla, On the twisting of Epstein zeta functions into Artin-Hecke L-series of Kummer fields, to appear.
- [9] D.M. Goldfeld - A. Schinzel, On Siegel's zero, Annali Scuola Normale Superiore, Serie IV, 2 (1975), pp. 571-585. Zbl0327.10041MR404213
- [10] E. Hecke, Eine Neue Art von Zetafunktionen und ihre Beziehugen zur Verteilung der Primzahlen (II), Math. Zeit., 6 (1920), pp. 11-56 (Mathematische Werke, pp. 249-289). JFM47.0152.01
- [11] E. Hecke, Über die Kroneckersche Grenzformel für reelle quadratische Körper und die Klassenzahl relativ-Abelscher Körper, Verhandlung Natur. GesellschaftBasel, 28 (1917), pp. 363-372 (Mathematische Werke, pp. 208-214). Zbl47.0144.01JFM47.0144.01
- [12] E. Hecke, Vorlesung über die Theorie der algebraischen Zahlen, Leipzig (1923). Zbl0057.27301
- [13] K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Zeit., 56 (1952), pp. 227-253. Zbl0049.16202MR53135
- [14] K. Iseki, On the imaginary quadratic fields of class number one or two, Jap. J. Math., 21 (1951), pp. 145-162. Zbl0054.02301MR51261
- [15] A.F. Lavrik, Funktional equations of Dirichlet functions, Soviet Math. Dokl., 7 (1966), pp. 1471-1473. Zbl0209.34801
- [16] L.J. Mordell, Diophantine Equations, Academic Press, London (1969). Zbl0188.34503MR249355
- [17] A.P. Ogg, On a convolution of L-series, Inventiones Math., 7 (1969), pp. 297-312. Zbl0205.50902MR246819
- [18] C.L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith., 1 (1935), pp. 83-86. Zbl0011.00903JFM61.0170.02
- [19] H.M. Stark, A complete determination of the complex quadratic fields with class number one, Mich. Math. J., 14 (1967), pp. 1-27. Zbl0148.27802MR222050
- [20] H.M. Stark, A transcendence theorem for class number problems, Annals of Math., 94 (1971), pp. 153-173. Zbl0229.12010MR297715
- [21] N.M. Stephens, The diophantine equation X3 + Y3 = DZ3 and the conjectures of Birch and Swinnerton-Dyer, J. reine angewandte Math., 231 (1968), pp. 121-162. Zbl0221.10023MR229651
- [22] J. Tate, Algebraic cycles and poles of zeta-functions, Arithmetical Algebraic Geometry, New York (1965), pp. 93-110. Zbl0213.22804MR225778
- [23] A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Amm., 168 (1967), pp. 149-156. Zbl0158.08601MR207658
- [24] A. Wiman, Über rational Punkte auf Kurven y2 = x(x2- c2), Acta Math., 77 (1945), pp. 281-320. Zbl0061.07110MR14721
Citations in EuDML Documents
top- M. J. Razar, Some functions related to the derivatives of the L-series of an elliptic curve at s=1
- Steven Arno, The imaginary quadratic fields of class number 4
- Steven Arno, M. L. Robinson, Ferrell S. Wheeler, Imaginary quadratic fields with small odd class number
- Ken Ono, Lawrence Sze, 4-core partitions and class numbers
- Ryotaro Okazaki, Inclusion of CM-fields and divisibility ofrelative class numbers
- Alex Kontorovich, Levels of Distribution and the Affine Sieve
- Pierre Colmez, La conjecture de Birch et Swinnerton-Dyer -adique
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.