The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer

Dorian M. Goldfeld

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1976)

  • Volume: 3, Issue: 4, page 623-663
  • ISSN: 0391-173X

How to cite

top

Goldfeld, Dorian M.. "The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.4 (1976): 623-663. <http://eudml.org/doc/83732>.

@article{Goldfeld1976,
author = {Goldfeld, Dorian M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {623-663},
publisher = {Scuola normale superiore},
title = {The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer},
url = {http://eudml.org/doc/83732},
volume = {3},
year = {1976},
}

TY - JOUR
AU - Goldfeld, Dorian M.
TI - The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1976
PB - Scuola normale superiore
VL - 3
IS - 4
SP - 623
EP - 663
LA - eng
UR - http://eudml.org/doc/83732
ER -

References

top
  1. [1] A. Baker, Linear forms in the logarithms of algebraic numbers, Mathematika, 13 (1966), pp. 204-216. Zbl0161.05201MR258756
  2. [2] A. Baker, Imaginary quadratic fields with class number two, Annals of Math., 94 (1971), pp. 139-152. Zbl0219.12008MR299583
  3. [3] B.J. Birch - N.M. Stephens, The parity of the rank of the Mordell-Weil group, Topology, 5 (1966), pp. 295-299. Zbl0146.42401MR201379
  4. [4] B.J. Birch - H.P.F. Swinnerton-Dyer, Notes on elliptic curves, J. reine angewandte Math., 218 (1965), pp. 79-108. Zbl0147.02506MR179168
  5. [5] M. Deuring, Die Zetafunktion einer algebraischer Kurve von Geschlechte Eins, I, II, III, IV, Nachr. Akad. Wiss.Göttingen (1953), pp. 85-94; (1954), pp. 13-42; (1956), pp. 37-76; (1957), pp. 55-80. 
  6. [6] D.M. Goldfeld, An asymptotic formula relating the Siegel zero and the class number of quadratic fields, Annali Scuola Normale Superiore, Serie IV, 2 (1975), pp. 611-615. Zbl0327.10042MR404212
  7. [7] D.M. Goldfeld, A simple proof of Siegel's theorem, Proc. Nat. Acad. Sciences U.S.A., 71 (1974), pp. 1055. Zbl0287.12019MR344222
  8. [8] D.M. Goldfeld - S. Chowla, On the twisting of Epstein zeta functions into Artin-Hecke L-series of Kummer fields, to appear. 
  9. [9] D.M. Goldfeld - A. Schinzel, On Siegel's zero, Annali Scuola Normale Superiore, Serie IV, 2 (1975), pp. 571-585. Zbl0327.10041MR404213
  10. [10] E. Hecke, Eine Neue Art von Zetafunktionen und ihre Beziehugen zur Verteilung der Primzahlen (II), Math. Zeit., 6 (1920), pp. 11-56 (Mathematische Werke, pp. 249-289). JFM47.0152.01
  11. [11] E. Hecke, Über die Kroneckersche Grenzformel für reelle quadratische Körper und die Klassenzahl relativ-Abelscher Körper, Verhandlung Natur. GesellschaftBasel, 28 (1917), pp. 363-372 (Mathematische Werke, pp. 208-214). Zbl47.0144.01JFM47.0144.01
  12. [12] E. Hecke, Vorlesung über die Theorie der algebraischen Zahlen, Leipzig (1923). Zbl0057.27301
  13. [13] K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Zeit., 56 (1952), pp. 227-253. Zbl0049.16202MR53135
  14. [14] K. Iseki, On the imaginary quadratic fields of class number one or two, Jap. J. Math., 21 (1951), pp. 145-162. Zbl0054.02301MR51261
  15. [15] A.F. Lavrik, Funktional equations of Dirichlet functions, Soviet Math. Dokl., 7 (1966), pp. 1471-1473. Zbl0209.34801
  16. [16] L.J. Mordell, Diophantine Equations, Academic Press, London (1969). Zbl0188.34503MR249355
  17. [17] A.P. Ogg, On a convolution of L-series, Inventiones Math., 7 (1969), pp. 297-312. Zbl0205.50902MR246819
  18. [18] C.L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith., 1 (1935), pp. 83-86. Zbl0011.00903JFM61.0170.02
  19. [19] H.M. Stark, A complete determination of the complex quadratic fields with class number one, Mich. Math. J., 14 (1967), pp. 1-27. Zbl0148.27802MR222050
  20. [20] H.M. Stark, A transcendence theorem for class number problems, Annals of Math., 94 (1971), pp. 153-173. Zbl0229.12010MR297715
  21. [21] N.M. Stephens, The diophantine equation X3 + Y3 = DZ3 and the conjectures of Birch and Swinnerton-Dyer, J. reine angewandte Math., 231 (1968), pp. 121-162. Zbl0221.10023MR229651
  22. [22] J. Tate, Algebraic cycles and poles of zeta-functions, Arithmetical Algebraic Geometry, New York (1965), pp. 93-110. Zbl0213.22804MR225778
  23. [23] A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Amm., 168 (1967), pp. 149-156. Zbl0158.08601MR207658
  24. [24] A. Wiman, Über rational Punkte auf Kurven y2 = x(x2- c2), Acta Math., 77 (1945), pp. 281-320. Zbl0061.07110MR14721

Citations in EuDML Documents

top
  1. M. J. Razar, Some functions related to the derivatives of the L-series of an elliptic curve at s=1
  2. Steven Arno, The imaginary quadratic fields of class number 4
  3. Steven Arno, M. L. Robinson, Ferrell S. Wheeler, Imaginary quadratic fields with small odd class number
  4. Ken Ono, Lawrence Sze, 4-core partitions and class numbers
  5. Ryotaro Okazaki, Inclusion of CM-fields and divisibility ofrelative class numbers
  6. Alex Kontorovich, Levels of Distribution and the Affine Sieve
  7. Pierre Colmez, La conjecture de Birch et Swinnerton-Dyer 𝐩 -adique

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.