Imaginary quadratic fields with small odd class number

Steven Arno; M. L. Robinson; Ferrell S. Wheeler

Acta Arithmetica (1998)

  • Volume: 83, Issue: 4, page 295-330
  • ISSN: 0065-1036

How to cite

top

Steven Arno, M. L. Robinson, and Ferrell S. Wheeler. "Imaginary quadratic fields with small odd class number." Acta Arithmetica 83.4 (1998): 295-330. <http://eudml.org/doc/207125>.

@article{StevenArno1998,
author = {Steven Arno, M. L. Robinson, Ferrell S. Wheeler},
journal = {Acta Arithmetica},
keywords = {binary quadratic forms; imaginary quadratic fields; class numbers; discriminants; imaginary quadratic fields with odd class numbers; separation of the minima; reduced quadratic forms; sieving techniques},
language = {eng},
number = {4},
pages = {295-330},
title = {Imaginary quadratic fields with small odd class number},
url = {http://eudml.org/doc/207125},
volume = {83},
year = {1998},
}

TY - JOUR
AU - Steven Arno
AU - M. L. Robinson
AU - Ferrell S. Wheeler
TI - Imaginary quadratic fields with small odd class number
JO - Acta Arithmetica
PY - 1998
VL - 83
IS - 4
SP - 295
EP - 330
LA - eng
KW - binary quadratic forms; imaginary quadratic fields; class numbers; discriminants; imaginary quadratic fields with odd class numbers; separation of the minima; reduced quadratic forms; sieving techniques
UR - http://eudml.org/doc/207125
ER -

References

top
  1. [1] S. Arno, The imaginary quadratic fields of class number 4, Acta Arith. 60 (1992), 321-334. Zbl0760.11033
  2. [2] A. Baker, Linear forms in the logarithms of algebraic numbers. I, Mathematika 13 (1966), 204-216. Zbl0161.05201
  3. [3] A. Baker, Imaginary quadratic fields with class number 2, Ann. of Math. 94 (1971), 139-152. 
  4. [4] A. Baker, Transcendental Number Theory, Cambridge Univ. Press, New York, 1975. Zbl0297.10013
  5. [5] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II, J. Reine Angew. Math. 218 (1965), 79-108. Zbl0147.02506
  6. [6] D. A. Buell, Class groups of quadratic fields. II, Math. Comp. 48 (1987), 85-93. Zbl0606.12004
  7. [7] H. Davenport, Multiplicative Number Theory, 2nd ed., Grad. Texts in Math. 74, Springer, New York, 1980. Zbl0453.10002
  8. [8] M. Deuring, Imaginäre quadratische Zahlkörper mit der Klassenzahl Eins, Invent. Math. 5 (1968), 169-179. Zbl0155.38001
  9. [9] C. F. Gauss, Disquisitiones Arithmeticae, Yale Univ. Press, 1966. 
  10. [10] D. M. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa 3 (1976), 623-663. Zbl0345.12007
  11. [11] B. Gross et D. Zagier, Points de Heegner et derivées de fonctions L, C. R. Acad. Sci. Paris 297 (1983), 85-87. 
  12. [12] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, London, 1968. Zbl0020.29201
  13. [13] K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227-253. Zbl0049.16202
  14. [14] H. Heilbronn, On the class number in imaginary quadratic fields, Quart. J. Math. Oxford Ser. 25 (1934), 150-160. Zbl0009.29602
  15. [15] A. E. Ingham, The Distribution of Prime Numbers, Cambridge Tracts in Math. 30, Cambridge Univ. Press, Cambridge, 1990. 
  16. [16] H. Kestelman, Modern Theories of Integration, Dover, New York, 1960. 
  17. [17] N. Levinson and R. M. Redheffer, Complex Variables, Holden-Day, San Francisco, 1970. Zbl0201.40202
  18. [18] H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, Acta Arith. 24 (1974), 529-542. Zbl0285.12004
  19. [19] J. Oesterlé, Nombres de classes des corps quadratiques imaginaires, Sém. Bourbaki, 1983-1984, exp. 631. 
  20. [20] C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1936), 83-86. Zbl61.0170.02
  21. [21] C. L. Siegel, Zum Beweise des Starkschen Satzes, Invent. Math. 5 (1968), 180-191. Zbl0175.33602
  22. [22] H. M. Stark, On complex quadratic number fields with class number equal to one, Trans. Amer. Math. Soc. 122 (1966), 112-119. Zbl0137.02401
  23. [23] H. M. Stark, A complete determination of the complex quadratic fields of class number one, Michigan Math. J. 14 (1967), 1-27. 
  24. [24] H. M. Stark, On the 'gap' in a theorem of Heegner, J. Number Theory 1 (1969), 16-27. Zbl0198.37702
  25. [25] H. M. Stark, L-functions and character sums for quadratic forms (II), Acta Arith. 15 (1969), 307-317. 
  26. [26] H. M. Stark, A transcendence theorem for class number problems, Ann. of Math. 94 (1971), 153-173. Zbl0229.12010
  27. [27] H. M. Stark, On a transcendence theorem for class number problems II, Ann. of Math. 96 (1972), 251-259. 
  28. [28] H. M. Stark, On complex quadratic fields with class number two, Math. Comp. 29 (1975), 289-302. Zbl0321.12009
  29. [29] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Univ. Press, London, 1966. Zbl0174.36202
  30. [30] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204-220. Zbl0032.26102
  31. [31] P. J. Weinberger, On small zeros of Dirichlet L-functions, Math. Comp. 29 (1975), 319-328. Zbl0301.10035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.