Imaginary quadratic fields with small odd class number
Steven Arno; M. L. Robinson; Ferrell S. Wheeler
Acta Arithmetica (1998)
- Volume: 83, Issue: 4, page 295-330
- ISSN: 0065-1036
Access Full Article
topHow to cite
topSteven Arno, M. L. Robinson, and Ferrell S. Wheeler. "Imaginary quadratic fields with small odd class number." Acta Arithmetica 83.4 (1998): 295-330. <http://eudml.org/doc/207125>.
@article{StevenArno1998,
author = {Steven Arno, M. L. Robinson, Ferrell S. Wheeler},
journal = {Acta Arithmetica},
keywords = {binary quadratic forms; imaginary quadratic fields; class numbers; discriminants; imaginary quadratic fields with odd class numbers; separation of the minima; reduced quadratic forms; sieving techniques},
language = {eng},
number = {4},
pages = {295-330},
title = {Imaginary quadratic fields with small odd class number},
url = {http://eudml.org/doc/207125},
volume = {83},
year = {1998},
}
TY - JOUR
AU - Steven Arno
AU - M. L. Robinson
AU - Ferrell S. Wheeler
TI - Imaginary quadratic fields with small odd class number
JO - Acta Arithmetica
PY - 1998
VL - 83
IS - 4
SP - 295
EP - 330
LA - eng
KW - binary quadratic forms; imaginary quadratic fields; class numbers; discriminants; imaginary quadratic fields with odd class numbers; separation of the minima; reduced quadratic forms; sieving techniques
UR - http://eudml.org/doc/207125
ER -
References
top- [1] S. Arno, The imaginary quadratic fields of class number 4, Acta Arith. 60 (1992), 321-334. Zbl0760.11033
- [2] A. Baker, Linear forms in the logarithms of algebraic numbers. I, Mathematika 13 (1966), 204-216. Zbl0161.05201
- [3] A. Baker, Imaginary quadratic fields with class number 2, Ann. of Math. 94 (1971), 139-152.
- [4] A. Baker, Transcendental Number Theory, Cambridge Univ. Press, New York, 1975. Zbl0297.10013
- [5] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II, J. Reine Angew. Math. 218 (1965), 79-108. Zbl0147.02506
- [6] D. A. Buell, Class groups of quadratic fields. II, Math. Comp. 48 (1987), 85-93. Zbl0606.12004
- [7] H. Davenport, Multiplicative Number Theory, 2nd ed., Grad. Texts in Math. 74, Springer, New York, 1980. Zbl0453.10002
- [8] M. Deuring, Imaginäre quadratische Zahlkörper mit der Klassenzahl Eins, Invent. Math. 5 (1968), 169-179. Zbl0155.38001
- [9] C. F. Gauss, Disquisitiones Arithmeticae, Yale Univ. Press, 1966.
- [10] D. M. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa 3 (1976), 623-663. Zbl0345.12007
- [11] B. Gross et D. Zagier, Points de Heegner et derivées de fonctions L, C. R. Acad. Sci. Paris 297 (1983), 85-87.
- [12] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, London, 1968. Zbl0020.29201
- [13] K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227-253. Zbl0049.16202
- [14] H. Heilbronn, On the class number in imaginary quadratic fields, Quart. J. Math. Oxford Ser. 25 (1934), 150-160. Zbl0009.29602
- [15] A. E. Ingham, The Distribution of Prime Numbers, Cambridge Tracts in Math. 30, Cambridge Univ. Press, Cambridge, 1990.
- [16] H. Kestelman, Modern Theories of Integration, Dover, New York, 1960.
- [17] N. Levinson and R. M. Redheffer, Complex Variables, Holden-Day, San Francisco, 1970. Zbl0201.40202
- [18] H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, Acta Arith. 24 (1974), 529-542. Zbl0285.12004
- [19] J. Oesterlé, Nombres de classes des corps quadratiques imaginaires, Sém. Bourbaki, 1983-1984, exp. 631.
- [20] C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1936), 83-86. Zbl61.0170.02
- [21] C. L. Siegel, Zum Beweise des Starkschen Satzes, Invent. Math. 5 (1968), 180-191. Zbl0175.33602
- [22] H. M. Stark, On complex quadratic number fields with class number equal to one, Trans. Amer. Math. Soc. 122 (1966), 112-119. Zbl0137.02401
- [23] H. M. Stark, A complete determination of the complex quadratic fields of class number one, Michigan Math. J. 14 (1967), 1-27.
- [24] H. M. Stark, On the 'gap' in a theorem of Heegner, J. Number Theory 1 (1969), 16-27. Zbl0198.37702
- [25] H. M. Stark, L-functions and character sums for quadratic forms (II), Acta Arith. 15 (1969), 307-317.
- [26] H. M. Stark, A transcendence theorem for class number problems, Ann. of Math. 94 (1971), 153-173. Zbl0229.12010
- [27] H. M. Stark, On a transcendence theorem for class number problems II, Ann. of Math. 96 (1972), 251-259.
- [28] H. M. Stark, On complex quadratic fields with class number two, Math. Comp. 29 (1975), 289-302. Zbl0321.12009
- [29] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Univ. Press, London, 1966. Zbl0174.36202
- [30] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204-220. Zbl0032.26102
- [31] P. J. Weinberger, On small zeros of Dirichlet L-functions, Math. Comp. 29 (1975), 319-328. Zbl0301.10035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.