Maximal unramified extensions of imaginary quadratic number fields of small conductors, II

Ken Yamamura

Journal de théorie des nombres de Bordeaux (2001)

  • Volume: 13, Issue: 2, page 633-649
  • ISSN: 1246-7405

Abstract

top
In the previous paper [15], we determined the structure of the Galois groups Gal ( K u r / K ) of the maximal unramified extensions K u r of imaginary quadratic number fields K of conductors 1000 under the Generalized Riemann Hypothesis (GRH) except for 23 fields (these are of conductors 723 ) and give a table of Gal ( K u r / K ) . We update the table (under GRH). For 19 exceptional fields K of them, we determine Gal ( K u r / K ) . In particular, for K = 𝐐 ( - 856 ) , we obtain Gal ( K u r / K ) S 4 ˜ × C 5 and K u r = K 4 , the fourth Hilbert class field of K . This is the first example of a number field whose class field tower has length four.

How to cite

top

Yamamura, Ken. "Maximal unramified extensions of imaginary quadratic number fields of small conductors, II." Journal de théorie des nombres de Bordeaux 13.2 (2001): 633-649. <http://eudml.org/doc/248726>.

@article{Yamamura2001,
abstract = {In the previous paper [15], we determined the structure of the Galois groups $\text\{Gal\}(K_\{ur\}/K)$ of the maximal unramified extensions $K_\{ur\}$ of imaginary quadratic number fields $K$ of conductors $\leqq 1000$ under the Generalized Riemann Hypothesis (GRH) except for 23 fields (these are of conductors $\geqq 723$) and give a table of $\text\{Gal\}(K_\{ur\}/K)$. We update the table (under GRH). For 19 exceptional fields $K$ of them, we determine $\text\{Gal\}(K_\{ur\}/K)$. In particular, for $K = \mathbf \{Q\}(\sqrt\{-856\})$, we obtain $\text\{Gal\}(K_\{ur\}/K) \cong \widetilde\{S_4\} \times C_5 \text\{ and \} K_\{ur\} = K_4$, the fourth Hilbert class field of $K$. This is the first example of a number field whose class field tower has length four.},
author = {Yamamura, Ken},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {CM-field; root discriminant; Hilbert class field; -extension; nonsolvable Galois group; conductor},
language = {eng},
number = {2},
pages = {633-649},
publisher = {Université Bordeaux I},
title = {Maximal unramified extensions of imaginary quadratic number fields of small conductors, II},
url = {http://eudml.org/doc/248726},
volume = {13},
year = {2001},
}

TY - JOUR
AU - Yamamura, Ken
TI - Maximal unramified extensions of imaginary quadratic number fields of small conductors, II
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 2
SP - 633
EP - 649
AB - In the previous paper [15], we determined the structure of the Galois groups $\text{Gal}(K_{ur}/K)$ of the maximal unramified extensions $K_{ur}$ of imaginary quadratic number fields $K$ of conductors $\leqq 1000$ under the Generalized Riemann Hypothesis (GRH) except for 23 fields (these are of conductors $\geqq 723$) and give a table of $\text{Gal}(K_{ur}/K)$. We update the table (under GRH). For 19 exceptional fields $K$ of them, we determine $\text{Gal}(K_{ur}/K)$. In particular, for $K = \mathbf {Q}(\sqrt{-856})$, we obtain $\text{Gal}(K_{ur}/K) \cong \widetilde{S_4} \times C_5 \text{ and } K_{ur} = K_4$, the fourth Hilbert class field of $K$. This is the first example of a number field whose class field tower has length four.
LA - eng
KW - CM-field; root discriminant; Hilbert class field; -extension; nonsolvable Galois group; conductor
UR - http://eudml.org/doc/248726
ER -

References

top
  1. [1] E. Benjamin, F. Lemmermeyer, C. Snyder, Imaginary quadratic fields k with cyclic Cl2(k1). J. Number Theory67 (1997), 229-245. Zbl0919.11074MR1486501
  2. [2] F. Gerth, III, The 4-class ranks of quadratic extensions of certain real quadratic fields. J. Number Theory33 (1989), 18-39. Zbl0694.12003MR1014385
  3. [3] H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert's Theorem 94. J. Number Theory8 (1976), 271-279. Zbl0334.12019MR417128
  4. [4] S.E. Lamacchia, Polynomials with Galois group PSL(2,7). Comm. Algebra8 (1980), 983-992. Zbl0436.12005MR573466
  5. [5] Y. Lefeuvre, S. Louboutin, The class number one problem for dihedral CM-fields. In: Algebraic number theory and Diophantine analysis, F. Halter-Koch and R. F. Tichy eds. (Graz, 1998), de Gruyter, Berlin, 2000, 249-275. Zbl0958.11071MR1770466
  6. [6] F. Lemmermeyer, Ideal class groups of cyclotomic number fields. I. Acta Arith.72 (1998), 59-70. Zbl0901.11031MR1613302
  7. [7] S. Louboutin, The class number one problem for the dihedral and dicyclic CM-fields. Colloq. Math.80 (1999), 259-265. Zbl1036.11056MR1703822
  8. [8] S. Louboutin, R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one. Acta Arith.67 (1994), 47-62. Zbl0809.11069MR1292520
  9. [9] A.M. Odlyzko, Some analytic estimates of class numbers and discriminants. Invent. Math.29 (1975), 275-286. Zbl0306.12005MR376613
  10. [10] A.M. Odlyzko, Discriminant bounds, (unpublished tables), Nov. 29th 1976; available from http://www.dtc.umn.edu/odlyzko/unpublished/index.html 
  11. [11] I. Schur, Über die Darstellung der symmetrischen und alternierenden Gruppe durch gebrochene lineare substitutionen. J. Reine Angew. Math.139 (1911), 155-250. Zbl42.0154.02JFM42.0154.02
  12. [12] M. Suzuki, Group theory. I Grundlehren der Mathematischen Wissenschaften 247, Springer-Verlag, Berlin-New York, 1982. Zbl0472.20001MR648772
  13. [13] K. Uchida, Class numbers of imaginary abelian number fields. I. Tôhoku Math. J. (2) 23 (1971), 97-104. Zbl0213.06903MR285509
  14. [14] Y. Yamamoto, Divisibility by 16 of class numbers of quadratic fields whose 2-class groups are cyclic. Osaka J. Math.21 (1984), 1-22. Zbl0535.12002MR736966
  15. [15] K. Yamamura, Maximal unramified extensions of imaginary quadratic number fields of small conductors. J. Théor. Nombres Bordeaux9 (1997), 405-448. Zbl0905.11048MR1617407
  16. [16] K. Yamamura, Maximal unramified extensions of real quadratic number fields of small conductors, in preparation. 
  17. [17] H.-S. Yang, S.-H. Kwon, The non-normal quartic CM-fields and the octic dihedral CM-fields with class number two. J. Number Theory79 (1999), 175-193. Zbl0976.11051MR1728146

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.